
ParkingMeter: Balancing Energy Savings and Service
Availability

Riccardo Crepaldi
University of Illinois

at Urbana Champaign
rcrepal2@illinois.edu

Ryan Welsh
University of Illinois

at Urbana Champaign
rjwelsh2@illinois.edu

Robin H. Kravets
University of Illinois

at Urbana Champaign
rhk@illinois.edu

ABSTRACT
Vehicular networks offer service coverage for urban environ-
ments that would otherwise be too costly for infrastructure-
based networks to provide. While many services have al-
ready been proposed based on collaboration between moving
cars, the inclusion of parked cars in these systems extends
their reach, coverage and stability. However, despite the
presence of a large car battery, cars still suffer from limited
energy availability when they are parked.

In these diverse environments, many services may be of-
fered and existing application-oriented energy management
solutions fail to capture the complexity of optimizing energy
for each individual service, while current service-oriented
solutions fail to capture the interactions between services.
In response, we propose ParkingMeter, an energy manage-
ment framework that handles the provisioning of multiple
services concurrently by fairly allocating energy to each ser-
vice, guaranteeing the most effective energy utilization for
the system. We demonstrate the effectiveness of Parking-
Meter through simulation of three diverse services and the
feasibility of the architecture through the evaluation of our
prototype system.

Categories and Subject Descriptors
C.2.1 [COMMUNICATION NETWORKS]: Network
Architecture and Design; C.2.4 [COMMUNICATION

NETWORKS]: Distributed Systems

Keywords
VANET, Opportunistic, Power Management, Distributed
services

1. INTRODUCTION
The availability of mobile services, including accessing

content or connectivity, has exploded, and with it, the de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VANET’13, June 25, 2013, Taipei, Taiwan
Copyright 2013 ACM 978-1-4503-2073-3/13/06 ...$15.00.

mand for users to access those services over limited wire-
less and cellular infrastructures from where ever they may
be, especially in their cars. With the increasing number
of devices and the high rates at which data is generated
and requested, the combined user bandwidth requirements
will quickly overwhelm the current infrastructures, and in-
creasing availability even more would be too expensive. In
response, distributed networks of vehicles have been pro-
posed to enhance local services, ultimately providing relief
of some of the stress on the infrastructure [1, 2, 3]. Since
connectivity between cars is challenged by high mobility and
uncoordinated deployment, the inclusion of parked cars has
been proposed to improve network stability and so system
and service performance [1, 2]. While introducing parked
cars seems to be a straightforward extension, despite the
large battery in every car, energy management becomes a
serious challenge.

To enable the inclusion of parked cars, it is necessary to
devise an energy-efficient schedule that drives when each ser-
vice should be turned on based on the demand for that ser-
vice over time. One of the biggest challenges in determining
such a schedule is the unpredictability of the network and
the service demands, which together require flexible and dy-
namic energy management strategies. Additionally, multi-
ple services may be offered at the same time and the diverse
nature of these services may require conflicting schedules.
Consider a car-to-car connectivity service using parked cars
as relays [1] that runs concurrently with a data collection
service for participatory sensing applications [3]. For the
former, a good schedule would provide the service when the
traffic flow is high, as we have shown in [4]. For the sens-
ing application, it makes more sense to use a duty-cycle
approach which evenly alternates periods of activity with
periods of sleeping. As hard as it is to measure the utility of
either service, the real challenge comes from combining two
completely uncorrelated utility metrics to enable an energy
efficient schedule. And of course the more services added,
the more complex this problem becomes. Finally, all of these
decisions must be made with limited input from the service
designers, who have no knowledge of which other services
are being offered.

In response to these challenges, we propose ParkingMe-
ter, a power management framework that enables effective
shared use of the available energy with minimal effort re-
quired to the service designers. ParkingMeter decisions are
based on estimates of vehicle stop duration, available energy
and demand for each service. ParkingMeter autonomously
determines a schedule that indicates when the system should

be active based on monitored system metrics (i.e., time or
battery level) and service specific metrics (i.e., density of
cars or frequency of running the service) that determine the
utility of each service. The schedule does not specify ex-
act times at which the system should be active, but rather
what conditions should trigger its activation. The main con-
tribution of our research is the design of a framework that
enables providing services even in an energy-constrained en-
vironment with a minimal effort from the service design-
ers. The main challenge that ParkingMeter must overcome
to achieve its goal is that of performing local, independent
decisions, in trying to provide a global service. We evalu-
ate the effectiveness of ParkingMeter through simulation of
three services and validate our design on a prototype system.
Our results show that ParkingMeter can effectively allocate
energy across multiple services in dynamic environments.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss why current service-oriented techniques
cannot be directly applied to support the multiple services
expected in vehicular networks. Section 3 presents three
services classes and their associated utility functions. In
Section 4, we describe the system model and architecture of
ParkingMeter. In Section 5, we provide a test case of how
ParkingMeter can provide optimal service for three compet-
ing services and present the results from our prototype for
one specific service, LoadingZones. Finally, in Section 6, we
discuss ongoing work and future improvements to Parking-
Meter.

2. DISTRIBUTED NETWORK OF SERVICES
Mobile systems were originally designed for application-

oriented devices that focused on responding to user input
and requests. However, as mobile devices become more
powerful, they have been used to build service-oriented dis-
tributed systems, such as wireless mesh, sensor or vehicular
networks, where nodes cooperate to provide network-wide
services to monitor the environment [?, 3], react to specific
events, or create a distributed network for users to access
the Internet or each other [?, ?, 1, ?, ?]. In this context,
vehicular networks have been suggested to support partici-
patory sensing [?, 3], enhance car-to-car communication to
share updates and alerts [?, 1, ?], as well as provide Inter-
net connectivity without overloading the cellular network or
incurring its high costs [?, ?].

For vehicular networks, recent proposals have suggested
the use of parked cars to improve system performance by
introducing more stability into vehicular networks [1, 2].
However, none of these approaches’ designs have considered
the fact that although services in parked cars do have ac-
cess to the car battery, that battery is not unlimited and
must always provide the power to start the engine when re-
quired. Building energy-efficient hardware is a necessity in
any battery-powered system, but it might not be enough
to provide continuous service when the battery is the only
source of energy. When a device does not have enough en-
ergy to provide continuous service, it is necessary to plan
a schedule and alternate periods of activity with periods of
sleeping to save energy. Careful planning can mean the dif-
ference between beneficial use of energy to provide services
that are actually used or wasting it when requests for the
service are low.

Energy management for application-oriented systems is a
well-researched area. However, such solutions can only be

applied to improve the efficiency of the service when it is
running and so extend the amount of time a service can be
available; they do not address the problem of scheduling ser-
vice availability to maximize service utilization. While not
quite as well fleshed out, energy management for service-

oriented systems has also been investigated with the main
focus on supporting one service, [4]. The presence of multi-
ple, diverse services on the same system makes things even
harder to manage.

The main goal of service-oriented systems is to provide a
service until a specific deadline. If the devices are active un-
til there is no energy available, the service will work at full
potential initially and eventually be completely silent. De-
vices should instead alternate periods of activity and periods
of sleeping to save energy and spread service availability over
time.

In many mobile service-oriented systems, such as sensor
networks, the main source of energy consumption is the wire-
less network interface. Synchronization mechanisms such as
PSM, or signaling-based protocols such as B-Mac [5], X-
Mac [6], or NPM [7] save energy by enabling long periods of
sleep during idle times. If the network is dense enough and
cooperation can be exploited, more aggressive approaches,
such as temporarily shutting down entire nodes [8], can be
applied without disrupting the service [9]. When a sleeping
node needs to be woken up, a trigger is used to turn the sys-
tem back on (i.e., Wake on Lan [10], Wake on Wireless [11]
or passive [12]), significantly reducing energy consumption
of the wireless component.

While existing techniques can be used to reduce network
energy consumption, they might not be as effective in ve-
hicular networks since the nodes are large vehicles equipped
with powerful and expensive hardware capable of provid-
ing multiple, complex services, in which the energy required
by the network interface is just a fraction of the overall
energy consumption. Additionally, while signaling-based
methods reduce idle energy consumption, they assume that
the switching time is almost immediate, so that a trigger
signal can wake up the radio in a matter of milliseconds.
Vehicular networks introduce two complications to apply-
ing such solutions. First, systems in a vehicle may be quite
complex and so most of the components must be off to ef-
fectively save energy. Switching from an energy saving state
to an active state implies booting or resuming a complex
operating system, establishing network connections and ac-
tivating one or more services. This transition could take a
few seconds. Second, the average contact duration between
two cars is also only a few seconds [1]. Essentially, if the
system waits until two cars come in contact with each other
to take the system out of sleep mode, by the time the sys-
tem is finally active and ready to provide the services, the
contact is almost at its end.

However, as difficult as it is to optimize energy consump-
tion for a single service, the final challenge comes when try-
ing to support multiple services in an energy constrained
system. While a solution such as [4], tailored to one specific
service, might achieve the highest performance in terms of
service offered per unit of energy spent, this approach is
limited. First of all, it would add the burden of designing
and implementing energy management for every new ser-
vice. Additionally, while it is generally safe to assume that
a wireless sensor network is providing only one service, or
a small number of strongly correlated services, a vehicular

network is capable of supporting multiple distinct services
at the same time, each with their own specific energy re-
quirements. An uncoordinated implementation of energy
management algorithms might result in poor combined per-
formance or, even worse, in conflicts between the different
strategies. For this reason, we propose a framework that ab-
stracts energy management so that any service can interface
with it and, with a minimal exchange of information, the
system can provide fair and efficient resource use across the
offered services.

3. SERVICE-DEPENDENT SCHEDULING
The benefits of activating a service can be measured by

introducing the concept of the utility of a service, which de-
pends on the particular use or performance of a given service.
For example, the utility of a routing service can be quantified
by the number of messages being routed, while the utility of
a sampling service can be quantified by the number of sam-
ples per second. Given knowledge of the amount of energy
available for a given time period, as well as which services
can be made available and their associated utility, the goal
of an optimal energy management strategy for multiple ser-
vices is to determine a active-sleep schedule for the system
that satisfies the following two properties: (1) all available
energy from the auxiliary battery should be used during a
stop (i.e., no available energy is left unused); (2) the cho-
sen active times for each service maximize the utility of the
system.

Before we can discuss the optimization of the utility of an
entire system, it is necessary to understand the utility of a
given service. One of the biggest challenges here is that it is
often very difficult to come up with a perfect utility function
for a service. However, given the dynamics of our target sys-
tems, perfection is not needed. Instead, it is beneficial just
to have an approximation of the utility. Therefore, we next
present three classes of services and propose associated util-
ity functions. The first two classes are based on measurable
properties of the system (i.e., density of cars and frequency
of availability), while the third requires a customized utility
function provided by the service.

The services discussed below have all been proposed or
implemented for vehicular networks. Despite the fact that
some have considered the use of parked vehicles, outside
of our preliminary work on an energy model for Loading-
Zones [4], the remaining approaches do not include an energy
management policy, but instead either focus on non-energy-
constrained environments or propose energy management
as a future work. Therefore, for LoadingZones, we briefly
describe our energy model and, for the other two services
discussed, we describe our proposed energy model for that
service, present an associated utility metric, and show how
these can be used to optimize energy consumption for the
specific service if it is run by itself.

3.1 System and Energy Model for Services
Each vehicle supports the desired services using an embed-

ded device that can be active, requiring power Pa, or idle,
requiring a much lower power, Pi.

1 The vehicles are either

1This base service energy model is identical to the one pre-
sented in [4]. We present it here so we can build off of it to
show that it is generic enough to schedule multiple types of
services.

moving, in which case no energy management is needed, or
parked for time δs and have available energy Eav. In this
section, we assume that the duration of the stop is known
to the system. Since the stop duration in a deployed system
must be estimated, in the rest of this paper, we consider
the duration of the stop to be a random variable with nor-
mal distribution, N (µs, σs), where µs is the average, and
σs the variance observed for the specific location and time.
Although it might seem difficult to accurately estimate the
duration of a stop for a parked vehicle, it has been shown
that it is strongly correlated to the parking location and time
of day. For example, if a car is parked in a restaurant area
at dinner time, the stop is most likely going to last between
one and two hours, while if it is parked at its home address
at night, it is more than likely that it will be parked until
the next morning. An even more accurate estimate can be
made if historical data stored on a specific vehicle can be
queried to locate previous stops in the same area at similar
times. The assumption of a normal distribution for parking
duration needs further investigation to be verified. However,
an analysis of how statistical data can improve the accuracy
of this estimate is not within the scope of this paper, and we
leave it for future work. Although the absolute performance
might change if the normal distribution does not hold, our
system architecture will still be valid.

To determine an optimal schedule for an individual ser-
vice, it is first necessary to determine what fraction of the
stop the service can be active for, and then select a sched-
ule of active and idle times. The total time the system can
spend in the active state is a function of Eav, Pa, Pi and
δs. The total energy spent during a stop, E, is given by:
E = δa · Pa + δi · Pi, where δa and δi are the times spent in
the active and idle states, and δs = δa + δi. The maximum
length of δa can be calculated using the maximum amount
of energy that can be spent, E = Eav:

δa =
Eav − Pi · δI

Pa

=
Eav − Pi · δs

(Pa − Pi)
. (1)

This time accounts for a fraction f = δa
δs

of the total esti-
mated duration of the stop.

3.2 LoadingZones
The first service we consider is LoadingZones [1], a com-

munication system that uses parked cars as relay agents be-
tween moving vehicles and APs. LoadingZones divides what
would be a single connection between a moving car and an
access point into a two hop link: the moving vehicle commu-
nicates with a parked car, which relays the packets to and
from an indoor AP.

The utility of running LoadingZones is determined by
the number of passing cars that need connectivity and the
amount of data they need to transfer. One way to approxi-
mate this is to use a utility function that is proportional to
the density of vehicles. For example, if rush hour is known
to be between 5 and 6 PM, a car parked between 12pm and
8pm could save energy from 12pm - 5pm to make sure that
LoadingZones can be provided during the most demanding
time.

Our preliminary work on energy management for parked
cars focused on supporting only one service, LoadingZones
in [4]. In that work, we presented an energy governor that,
given an estimate of the traffic density, identifies a thresh-
old Th such that when the density is above this value, the

system is activated and that the total active time during the
stop is equal to δa, thus optimizing the utility of the service
and using all of the available energy.

3.3 MobEyes
MobEyes [3] is a participatory sensing system that lever-

ages the pervasiveness of cars on the road in an effort to
extend the scope of sensing to an urban environment with-
out the necessity of deploying a new infrastructure. How-
ever, the networking required to upload the samples, which
can include video, sound recordings or similar complex sam-
ples, requires a high bandwidth, energy-expensive connec-
tion. Additionally, complex sensors, such as those for air
quality, use energy demanding hardware and it would be
prohibitive to keep them active when new samples are not
required.

For sensing applications, the utility of specifically sensed
samples is application-specific since knowing what quantity
is being sensed and its characteristics is necessary to under-
stand precisely what defines the utility. Mobeyes did not
include any energy manager, however it is straightforward
to approximate the utility of a sensing service based on the
frequency at which the samples are taken (i.e., more frequent
samples represent higher utility). Based on how long it takes
to take one sample, δsample, our proposed energy manage-
ment policy schedules regular sampling intervals, i, so that
the sum of the active time stays within the constraints

i =
δs
δa

δsample

. (2)

The more energy available, the more frequently samples can
be generated. For this service, δs could be computed as
µs+σs to guarantee that the estimate is longer than 80% of
the stops, so that energy can last until the end of each stop.

3.4 MapShare
Some services focus on content delivery and sharing. For

example, TomTom’s MapShare [13] is a service for dissemi-
nating more frequent map updates using a sharing technol-
ogy among users, which can update their maps and share
these updates with other users in their“network”. Currently,
MapShare works only off-line, connecting the device with a
USB cable to a computer. With a WiFi-radio embedded in
the navigation unit and a proper energy manager, not only
could updates be downloaded several times a day, but each
vehicle could also cooperate in pushing new information for
other vehicles to use.

Utility for this type of service is a little more complex
and will likely need a customized utility function from the
service provider. In our generic implementation, we define
the utility of uploading data for other vehicles as decreasing
with the age of the data, while that of downloading data
that improves the navigation decision for the upcoming trip
increases as the departure time is approaching. Although it
is true that the user will start the car, providing enough en-
ergy, moments before leaving, this time might not be enough
to download the updates, so it is still a good idea to start
the download before the user returns.

Assuming knowledge about the parking duration, δs, the
best policy is to immediately upload any local updates and
then keep the device in an idle state, activating the ser-
vice right before departure, so that the energy is used to
download the most recent information. Therefore, the sys-

tem should be active half of δa to upload information at
the beginning of a stop, and half of it to download the latest
update in an interval centered around µs−σs. The even dis-
tribution of active time between uploading and downloading
information is just an example, and different strategies could
easily allocate more energy to one or the other activity.

3.5 Supporting Multiple Services
In a resourceful device like a car, many of these services

can be provided simultaneously, which introduces an inter-
esting problem of resource sharing. Essentially, it is impor-
tant to balance the use of the available energy fairly across
the multiple services. However, given the dynamics of the
systems and the environment it is deployed in, this fair share
must be based on the utility of offering the service at a given
time.

Without knowledge of the other services and their associ-
ated utilities, the combined schedule determined by an in-
dependent set of services could end up being suboptimal,
leaving unused energy that could have improved the perfor-
mance of the system, or overoptimistic, trying to use more
energy than that available to the system.

In the next section, we present the basics of our sys-
tem, Parking Meter, which abstracts the energy manage-
ment policies and enables a seamless integration of many
services with minimum effort for the service designers. Park-
ingMeter is designed to manage any type of service that can
be associated to an utility function, with a minimal effort
required to the system designers, and without requiring any
explicit interaction between services.

4. PARKING METER
Given the number and diversity of the expected services

offered in a vehicular network, a generalized energy man-
agement strategy is key to extending the network to parked
cars. However, it is critical to provide a system interface
that simplifies the load on the service designers and so al-
lows them the means to integrate energy management. To
support these services, we designed an energy management
framework, ParkingMeter, that provides a common place
for all services to register and obtain a fair share of the
energy resources. ParkingMeter integrates our previous En-
ergy Governor for LoadingZones, which only managed the
energy for that one specific service, by managing multiple
simultaneous and diverse services. Services that want to
be scheduled must provide some information about them-
selves to allow ParkingMeter to determine an efficient ac-
tivity schedule. However, ParkingMeter keeps this energy
awareness of the service to a minimum.

Given a vehicle’s device that can support multiple ser-
vices with different characteristics, the basic idea of Park-
ingMeter is to control the energy-saving modes of the device
(i.e., when it is active or sleeping). With information about
the services’ costs and utility functions, ParkingMeter de-
termines a schedule for when to activate the system. Addi-
tionally, by supporting a simple callback function for more
complex services, ParkingMeter is flexible enough to fully in-
tegrate services whose utility definition requires customized
behavior.

In this section, we first describe our system model and
then provide an overview of the ParkingMeter architecture,
with a particular focus on the three scheduling strategies.

Parking Meter

Primitives

Time since stop

Time to

Departure

Traffic Density

...

Scheduler

Interval-based

Primitive-based

Custom

Services

Interval-based

(e.g. MobEyes)

Primitive-based

(e.g. LoadingZones)

Custom strategy

(e.g. MapShare)

Energy Meter

Stop Duration

Estimator

Battery Status

Hardware

Controller

Figure 1: ParkingMeter Architecture

Finally, we describe how the central framework facilitates
the fair distribution of energy among multiple services.

4.1 System Model
The base system model for ParkingMeter is similar to our

energy Governor and includes three states, Active, Idle and
Deep Sleep. However, the design of ParkingMeter is not lim-
ited to these states and can be expanded as needed. While
these states are certainly differentiated by their energy con-
sumption, it is also important to understand what function-
ality is available in each state.

In Active mode, all hardware components are active and
all services are enabled and available. In this state, the
system power is Pa.

For Idle mode, only low-power hardware is active, with
a power footprint of Pi << Pa but limited functionality. In
this mode, the system can monitor a number of environ-
mental characteristics or primitives that are only dependent
on the low-power hardware. Essentially, primitives can be
based on simple system parameters, enabling the system to
track elapsed time since the beginning of the stop or es-
timated time to departure, or battery levels, enabling the
system to determine available energy for a given stop. Addi-
tionally, other simple metrics can be added using low-power
hardware, such as acoustic sensors that expose environmen-
tal noise levels. In our prototype, we add a low-power ZigBee
radio to monitor traffic density.

The final state is the Deep Sleep mode, which is the
most energy saving state that runs at Pds ≈ 0. In this state,
no functionality is provided.

4.2 System Architecture
ParkingMeter sits between the system controller, which

controls the system state transitions, and the services. Park-
ingMeter includes an energy meter to monitor the level of
the battery and a stop duration estimator, as well as access
to a number of primitives, all of which are accessible when
the system is active or idle. In our current implementation,
ParkingMeter’s main primitives are traffic density based on
monitoring the number of passing cars and timing informa-
tion about the time of the stop.

One of the most important components for ParkingMe-
ter is the stop duration estimator, which uses local history,
GPS position, and statistics collected by a central server,
to predict an estimate for the duration of a new stop, δs.
While fine grained statistics are hard to obtain, although

some promising effort is being pursued, the complexity es-
timation and the verification of its accuracy are out of the
scope of this paper. Instead, we consider the output of the
stop duration estimator to be a random Gaussian variable
N (µs, σs). The stop duration estimator uses a conservative
approach by computing the estimated length of a stop as:

δs = µs + σs. (3)

which guarantees that, for 80% of stops, parking duration is
not underestimated.

For each primitive, ParkingMeter computes a cumulative
distribution function (CDF) over the estimated duration of
the stop. For some metrics, such as time passed since the
beginning of the stop or until the departure, this metric is
easily computed and solely based on the duration of the stop.
Other primitives, such as traffic density, have more complex
behavior and their distribution is a function of location, time
of day and duration of the stop. For such primitives, Park-
ingMeter implements the necessary procedures to compute
or obtain the CDF. For traffic distribution, when the vehicle
is stopped, ParkingMeter connects to a central server that
stores traffic logs, such as those found in [14]. This informa-
tion is enough to compute an estimated CDF. The level of
detail of this information can be enriched over time, espe-
cially for the most popular locations, by updating the data
on the server as well as using a cache of the vehicle history
on the system itself.

Finally, the central component of ParkingMeter, and its
main differentiating component from our original Energy
Governor, is the scheduler, which collects the stop duration
estimation, the value of the primitives and the properties of
the services that need to be be scheduled. The full system
architecture is illustrated in Figure 1. To better accom-
modate the needs of the largest possible number of services,
ParkingMeter offers three scheduling alternatives to any reg-
istered service: primitive-based, interval-based and custom.
We first describe each of these schedulers and then discuss
how ParkingMeter addresses the complexity of running mul-
tiple services with different scheduling requirements at the
same time.

Primitive-based scheduler
This scheduler follows the algorithm described in [4] for the
LoadingZones governor, and it is based on the utility of the
service, Us. If no specific utility function is provided, Park-
ingMeter assumes a linear utility function.

To maximize at the same time the amount of time the ser-
vice is active and its utility, the scheduler defines a thresh-
old Th for the utility and activating the service every time
Us(t) > Th. The identification of the right threshold that
satisfies the properties of an optimal schedule is easier if we
leverage the characteristics of the CDF of the metric. The
CDF is a monotonic function and is much less susceptible to
the noise that perturbs metrics such as traffic density. After
determining what fraction f of the stop the service can be
active, using (1), the threshold is computed as:

Th = CDF
−1(f), (4)

where CDF−1 is the inverse of the CDF , or quantile func-
tion. Algorithm 1 describes the steps followed by the primitive-
based scheduler.

Algorithm 1: Primitive scheduler for service s

Eav : available energy();
δs : stopEstimator→get Stop Duration();
intmin : s →get min active time();
p: s →get primitive();
CDF : p →get CDF();
/* compute f using (1) */

f : get active frac(Eav,δs);
/* compute threshold using (4) */

Th: get threshold(CDF ,f);
while parked do

u: p → get primitive value();
if u > Th then

SetActive();
else

SetIdle();
end

/* repeat test after intmin */

wait(intmin);

end

Algorithm 2: Interval scheduler for service s

intmin : s →get minimum active time();
Eav : available energy();
δs : stopEstimator→get Stop Duration();
i : compute interval();
while parked do

SetActive();
/* stay active for intmin */

wait intmin;
SetIdle();
/* complete the period */

wait i− intmin;

end

Interval-based scheduler
Some services define utility based on the frequency of op-
eration. For example, a participatory sensing service such
as MobEyes must collect as many samples as possible, ac-
cording to the available energy Eav, equally distributed over
the total duration of the stop, at intervals i. The interval-
based scheduler defines the optimal (i.e., smallest) interval
at which the service should be activated autonomously. The
registered service only provides the minimum continuous ac-
tive time that should be guaranteed. For example, a sensing
service should specify how long it takes to boot the sen-
sors, collect the samples and process them (e.g. δsample for
MobEyes).

With this information, the scheduler computes an optimal
interval using (2), and then activates the system at intervals
i, for a time δsample, until the car moves or all the avail-
able energy is consumed. The behavior of the interval-based
scheduler is described in Algorithm 2.

Custom scheduler
For some services the utility is a non-monotonic function of
one primitive or an aggregate of multiple primitives. For
example, the utility for MapShare depends on the utility

Algorithm 3: Custom scheduler for service s

Eav : available energy();
δs : stopEstimator→get Stop Duration();
intmin : s →get min active time();
p: s →get primitive();
CDF : s →get CDF();
/* compute f using (1) */

f : get active frac(Eav,δs);
/* compute threshold using (4) */

Th: get threshold(CDF ,f);
while parked do

u: s → get U(p);
if u > Th then

SetActive();
else

SetIdle();
end

/* repeat test after intmin */

wait(intmin);

end

of uploading data collected during the last driving period,
which decreases with the age of that data, and the utility
of downloading new data, which is a function of how “fresh”
the data will be when the car leaves the parking space. For
MapShare, we can quantify the benefits of keeping the sys-
tem alive at a given time combining two primitives: “time
since stop”, ts, and “time to departure”, ∆s:

UMS = max (−ts,−∆s) (5)

For such services, ParkingMeter provides the custom sched-

uler. The procedure for these services is similar to that de-
scribed for the primitive-based scheduler. However, in this
case ParkingMeter requires the service itself to provide a
function that returns the value of U , for the service and the
respective CDF. The procedure is described in Algorithm 3.

While this does require knowledge of energy conservation
from the service designer to provide the metric U and its
CDF, the overhead is lower than that required to imple-
ment an independent power management system. Addition-
ally, the benefit of centralizing the scheduling of each ser-
vice in ParkingMeter includes a more efficient distribution
of the limited energy across multiple services with different
requirements.

4.3 Combining multiple services
The benefits of a framework like ParkingMeter are most

important when multiple services are provided on the same
system and so must share the limited available energy. In
this case, ParkingMeter focuses on fairness among services,
and optimality for each service given its share of energy to
use. Optimality within a service is defined by the service’s
utility function, as described in the previous section. When
multiple services are active, it is likely that two or more
services are scheduled at the same time. In this fortunate
situation, their energy cost is shared, and the saved energy
can be used to extend the schedule of the services.

Since an optimal solution requires perfect knowledge of
stop duration, ParkingMeter applies effective heuristics to
define the activity schedule. ParkingMeter initially takes a

Algorithm 4: Multi service schedule

Eav : available energy();
δs : stopEstimator→get Stop Duration();
S : set of services that must be scheduled;
active cnt = 0;
interval : max(s →get min active time(), ∀s ∈ (S));
foreach s in S do

/* compute eav,s using (6) */

Eav,s: get available energy();
run schedule (s,Eav,s);

end

while parked do

activeCount = 0;
foreach s in S do

if s.isActive() then activeCount++;
end

/* multiple services using the same energy

*/

if active cnt > 1 then

reschedule(S);
end

wait(interval);

end

pessimistic approach and evenly divides the available energy
among the services. This distribution could also take prior-
ities into consideration by assigning each service a priority
pi. The available energy for each service, Eav,i is computed
as follows:

Eav,i = Eav ·
pi∑

∀j∈S
pj

(6)

Each service then determines its optimal schedule for the
given amount of energy for the stop.

Since this is a pessimistic solution that does not con-
sider the frequent overlaps among services, ParkingMeter
reassesses the available energy when two or more services
overlap, sharing the same amount of energy and recalculates
the schedule for each service. The behavior of ParkingMeter
in managing multiple services is described by Algorithm 4.

To understand the impact of ParkingMeter’s scheduling
decisions, we measured the energy required by the schedule
defined by ParkingMeter for LoadingZones, MapShare and
MobEyes, individually, and compared it to a schedule that
assumes no knowledge of other services and tries to use all
of the energy for each service (see Table 1). In this case
the system would require too much energy, and would cease
working before the end of the vehicle stop. Given the pref-
erence of MapShare to wait until the end of the stop for
downloading updates, this service would most likely be the
most heavily affected, in fact, with all likeliness it will never
be activated due to lack of energy. MobEyes would also pro-
duce too frequent samples initially, and leave a significant
hole towards the end of the stop.

5. EVALUATION
Our evaluation of ParkingMeter is based on two factors:

its capability to schedule efficiently individual services using
either of its schedulers, and its ability of providing a fair

Service % energy used
LoadingZones 99.7%
MapShare 93.2%
MobEyes 84.7%

Combined 148%

Table 1: Energy used when combining services that

are scheduled independently. Despite overlapping,

the total energy used is well above the total available

energy.

MobEyes LoadingZones MapShare Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−
M

S
E

FrontLoad
DutyCycle
ParkingMeter

Figure 2: Proximity of the schedule produced by

each strategy to the optimal schedule. 1 =Perfect

matching, 0 =no overlap.

and efficient schedule for multiple concurrent services. We
compare it to two non-adaptive strategies. The first and
most simple one, FrontLoad, activates the system at the
beginning of the parking period and runs until the battery is
completely discharged. The DutyCycle approach alternates
active and sleep periods at regular intervals to guarantee
an even distribution of the active time over the estimated
duration of the stop. We evaluated different period lengths
for DutyCycle, but only show the results for a period of 20
minutes. This guarantees that in each period, MobEyes can
be active for the minimum sensing time, 2 minutes. For
space constraints we do not display the results for other
settings of these parameters. However, the adaptivity of
ParkingMeter consistently achieved near-optimal schedules
for every configuration we tested, while the performance of
DutyCycle was extremely dependent on the choice of the
two parameters.

We implemented the model, the ParkingMeter framework
and the two other strategies in a MATLAB simulator. The
flexibility of the simulated environment allowed us to gen-
erate a large number of scenarios and evaluate performance
in ideal conditions. Furthermore, using our simulator, we
were able to control the level of precision of our stop dura-
tion estimation, as well as the noise that affects the traffic
density with respect to its average value provided by online
databases.

5.1 System Performance
To measure the performance of each schedule, we com-

pute the similarity with the optimal schedule, computed a

posteriori, as the MSE of the difference between two binary

MobEyes LoadingZones MapShare
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−
M

S
E

FrontLoad
DutyCycle
ParkingMeter

Figure 3: Proximity of the schedule produced by

each strategy to the optimal schedule when the stop

duration is a random variable.

vectors, one of which represents the status (active or not) of
the service over time of the optimal schedule while the other
represents the schedule produced by the evaluated strategy.
The schedule computed by FrontLoad and DutyCycle are
fixed and do not depend on the service properties. This
has a negative impact on the effectiveness of their schedules
even in ideal conditions and when only one service must be
scheduled (see Figure 2, where a value equal to 1 identifies a
perfect match between a schedule and the optimal solution).
We individually scheduled MobEyes, MapShare and Load-
ingZones simulating many stops of different lengths, keeping
the battery level constant. To limit the dependency of the
specific traffic distribution that we used for the performance
of LoadingZones, we also simulated a service based on a
metric whose values are generated from a random process.

In all cases, the schedule produced by the adaptive ap-
proach of ParkingMeter is almost perfectly overlapping with
the optimal schedule. FrontLoad and DutyCycle perform
equally poorly in both configurations. Notably, DutyCycle
has a slight advantage over FrontLoad in scheduling MobEyes,
for which an optimal schedule is indeed a regular interleaving
of active and sleeping times. However, as opposed to Park-
ingMeter, DutyCycle does not adapt the length of an active
interval based on the information provided by the service.

For LoadingZones, not only the duration of the stop is im-
portant, but also the time of the day, which influences the
traffic density values during the stop. The value shown in
Figure 2 for LoadingZones, taken from [4], are an average
over multiple simulations of the same duration, starting at
different times of the day. We computed the standard devi-
ation of the results for each run, which show an almost null
value for the adaptive solution proposed by ParkingMeter,
while the proximity between the DutyCycle and FrontLoad
schedule and the optimal one show a very large dependency
on the time at which the schedule starts.

5.2 Effect of Approximation
The duration of the stop, δs and in some case the values

of the metrics, such as traffic density, are approximations
based on statistical analysis of historical data. To investigate
the negative impact of approximations on the performance
of the various scheduling strategies, we ran our simulations
generating δs as a random Gaussian variable N (µs, σs).

Strategy Energy Used Average Similarity
FL 100% 0.52
DC 100% 0.65
PM-Individual 148% 0.98
PM-Conservative 78% 0.40
PM-Combine 100% 0.85

Table 2: Total energy used and average similarity

to the optimal schedule for different strategies in

multi-service systems.

As described in our system architecture, in an effort to
guarantee service availability throughout the whole stop, we
used a conservative estimate for duration, δs,est = µs + σs.
We used the same heuristic for DutyCycle, while FrontLoad
keeps using all energy at the beginning of the stop. The
average results for several simulations with random values
of δs, shown in Figure 3 for σ = 0.1 · δs, confirm the bene-
fits of the adaptive approach used by ParkingMeter, which
consistently achieves a schedule that is closer to optimal
with respect to the non-adaptive approaches. FrontLoad has
some advantage with respect to the non-random simulations
because it always uses all energy, while the conservative ap-
proach taken by ParkingMeter and DutyCycle in many cases
causes an under-utilization of the available energy. This is
still preferable to using all energy before the stop ends, since
this latter approach would cause an unfair distribution of
the resources, penalizing those services such as MapShare
that must be active towards the end of the stop. We evalu-
ated the effect of errors between the primitives and their ex-
pected distribution (the CDF that ParkingMeter uses for its
primitive-based strategy), and we observed a similar behav-
ior, with ParkingMeter outperforming the other approaches
and finding a schedule that overlaps with the optimal one
for the largest part.

5.3 Combining Services
ParkingMeter provides a quasi optimal schedule for single-

service systems. We also evaluated its ability to concurrently
schedule multiple services that are registered on the same
system. We measure the similarity of the produced schedule
to the optimal one that each service would obtain if sched-
uled independently. The results are summarized in Table 2,
where the average similarity for the three services is shown
for each scheduling strategy.

Since in our model all services can be provided in the same
active status, FrontLoad and DutyCycle are not affected
at all by the presence of multiple services, and provide the
same schedule as the single case. In a real deployment, the
slightly higher hardware utilization due to the presence of
multiple services would actually negatively affect the system
energy consumption, but we consider this factor negligible
in our evaluation. PM-Individual refers to a scheduler that
assumes no knowledge of other services, and tries to use all
of the energy for each service. The system would require
too much energy too satisfy this schedule, and would cease
working prematurely. Given the preference of MapShare to
wait until the end of the stop for downloading updates, this
service would most likely be the most heavily affected, in
fact, with all likeliness it will never be activated due to lack
of energy. MobEyes would initially produce too frequent

5KJ − 7:00am 10KJ − 7:00am 5KJ − 10:00am
0

2

4

6

8

10

12

14
x 10

4

en
er

gy
 e

ffi
ci

en
cy

 b
its

/J

FrontLoad
DutyCycle − 10m
DutyCycle − 30m
ParkingMeter

Figure 4: Energy efficiency in our prototype imple-

mentation.

samples, and leave a significant hole towards the end of the
stop.

PM-Conservative is the overly conservative alternative to
solve this issue, which assigns a third of the available energy
to each service, and computes the optimal schedule for each
based on that value. This approach is successful in meeting
the goal of extending the lifetime of the system for the whole
duration of the stop, but since this approach ignores the
overlap of the schedules for each service, it ends up saving
a lot of energy, with a negative impact on the benefits for
each service, as shown by the very low similarity with the
optimal schedule.

PM-Combine addresses both these issues by computing a
new schedule every time two services overlap adapting the
schedules and achieving a 100% energy utilization.

5.4 Prototype
While simulations can provide extensive exploration of the

system space, it is important to understand how Parking-
Meter works in a real system. Therefore, we implemented a
prototype of ParkingMeter and tested it as part of the Illi-
nois Vehicular Project using our implementation of Load-
ingZones as a test service. An evaluation of the efficiency of
ParkingMeter in a real deployment is challenging due to the
long time that each experiment would require and the large
number of devices that would be required to test the sched-
uler for services like LoadingZones. Consequently, we ran
the experiments in our lab by generating traffic according
to traces retrieved from databases such as [14]. We tested
different values for the available energy, and different stop
times and duration, confirming how ParkingMeter can al-
ways adapt to these parameters and maximize its energy effi-
ciency, while the performance of its competitors are strongly
dependent on them. For example FrontLoad, which spends
all the energy in the first part of the stop, works well if the
stop begins during rush hour, but poorly if the car is parked
overnight when traffic is low (see Figure 4).

We are continuing our effort for the integration of Parking-
Meter in the IVP hardware and its deployment on a larger
scale.

6. CONCLUSION
The successful deployment of distributed networks of ser-

vices is a promising opportunity that vehicular networks,

and in particular parked vehicles, can contribute to. How-
ever, a number of challenges must be addressed to make this
vision a reality. One of the most important is to manage
the challenging task of maximizing service availability even
when limited energy and long stop duration make it neces-
sary to enforce a sleep-active schedule. The co-existence of
several diverse services sharing the same resources make this
task even harder.

In this paper, we presented ParkingMeter, a framework
that is capable of providing near-optimal scheduling for mul-
tiple services with a minimal effort for the service designers.
ParkingMeter offers three scheduling strategies, which are
capable of automatically scheduling services that rely on a
number of primitives that the framework can measure. At
the same time, it allows the service to provide more specific
details about its requirements through the custom scheduler.

We demonstrate that the adaptive strategy of Parking-
Meter achieves near-optimal solutions in an ideal scenario
with perfect estimates of the stop duration. We also verified
that the system is able to react to random errors with less
performance loss with respect to its non-adaptive competi-
tors. Finally, we provide the results of our experiments on a
custom-designed hardware which not only confirms the per-
formance of ParkingMeter, but also its ability to schedule
our prototype service without requiring any change to its
code.

We are working on improving the robustness of the imple-
mentation of ParkingMeter and adding more primitives to
our hardware prototype to extend the range of services. We
are also working on how to integrate collaboration between
devices into the system to enable even more energy savings
when multiple devices are offering the same service in the
same location.

7. REFERENCES
[1] R. Crepaldi, R. Beavers, B. Ehrat, M. Jaeger,

S. Biersteker, and R. Kravets, “LoadingZones:
Leveraging Street Parking to Enable Vehicular
Internet Access,” in Proceedings of CHANTS ’12.

[2] N. Liu, M. Liu, W. Lou, G. Chen, and J. Cao, “PVA
in VANETs: Stopped cars are not silent,” in
Proceedings IEEE INFOCOM’11.

[3] U. Lee, B. Zhou, M. Gerla, E. Magistretti,
P. Bellavista, and A. Corradi, “Mobeyes: smart mobs
for urban monitoring with a vehicular sensor network,”
IEEE Wireless Communications, vol. 13, 2006.

[4] R. Crepaldi, R. Welsh, and R. Kravets, “Governing
Energy for Parked Cars,” in Proceedings of WONS ’13.

[5] J. Polastre, J. Hill, and D. Culler, “Versatile low
power media access for wireless sensor networks,” in
Proceedings of ACM SenSys ’04.

[6] M. Buettner, G. V. Yee, E. Anderson, and R. Han,
“X-MAC: A Short Preamble MAC Protocol for
Duty-Cycled Wireless Sensor Networks,” in
Proceedings of ACM SenSys ’06, 2006.

[7] F. Ashraf, R. Crepaldi, and R. H. Kravets, “Know
your neighborhood: A strategy for energy-efficient
communication,” in Proceedings of IEEE MASS ’04.

[8] C. Sengul and R. Kravets, “Heuristic approaches to
energy-efficient network design problem,” in
Proceedings of IEEE ICDCS ’07.

[9] S. Das, “Avoiding Energy Holes in Wireless Sensor

Networks with Nonuniform Node Distribution,” IEEE
Transactions on Parallel and Distributed Systems,
2008.

[10] R. A. Williams and J. R. Dwark, “Apparatus and
method in a network interface for enabling power up
of a host computer using magic packet and on-now
power up management schemes,” 1999.

[11] E. Shih, P. Bahl, and M. J. Sinclair, “Wake on
wireless: An Event Driven Energy Saving Strategy for

Battery Operated Devices,” in Proceedings of ACM

MobiCom ’02.

[12] L. Gu and J. Stankovic, “Radio-Triggered Wake-Up
for Wireless Sensor Networks,” in Real-Time Systems,
2005.

[13] (2013) TomTom Mapshare. [Online]. Available:
http://www.tomtom.com/en gb/maps/map-share/

[14] (2012) Massachusetts Department of Transportation.
[Online]. Available: http://mhd.ms2soft.com/tcds/

http://www.tomtom.com/en_gb/maps/map-share/
http://mhd.ms2soft.com/tcds/

	Introduction
	Distributed network of services
	Service-dependent scheduling
	System and Energy Model for Services
	LoadingZones
	MobEyes
	MapShare
	Supporting Multiple Services

	Parking Meter
	System Model
	System Architecture
	Combining multiple services

	Evaluation
	System Performance
	Effect of Approximation
	Combining Services
	Prototype

	Conclusion
	References

