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Abstract

Sensor network protocols must minimize energy consumption due to their resource-constrained nature. Large amounts
of redundant data are produced by the sensors in such networks; however, sending unnecessary data wastes energy. One
common technique used to reduce the amount of data in sensor networks is data aggregation. Therefore, we consider the
impact and cost of data aggregation in sensor networks to achieve energy-efficient operation. We propose a new notion of
energy efficiency that can be used to decide where aggregation points in the network should be placed. The optimal choice
of these points is determined by the aggregation efficiency, which determines the amount of data reduction, and the cost in
terms of energy to perform the aggregation. We present our aggregation tree algorithm ‘‘Oceanus’’ that produces energy-
efficient aggregation trees by taking into account both of these factors. Our evaluation shows that Oceanus provides higher
energy efficiency compared to existing solutions.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Advances in computing and communication
technologies have enabled the creation of small
devices capable of complex sensing and computa-
tion. While the goal is to embed these devices into
our surrounding environments, energy consumption
has become the main limiting factor of the lifetimes,
and so the effectiveness, of these sensor networks.
To support increased network lifetime, it is neces-
sary to design energy-efficient communication
protocols. Although such protocols have been pro-
posed in the context of ad hoc networks [1], the
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data-centric focus of sensor networks lends itself
to better energy efficiency through intelligent man-
agement of the data.

In typical communications scenarios for sensor
networks, data about a particular event is collected
by the sensors and is then sent to a data sink, which
can be anywhere in the network. Frequently, the
sink may not require the original data from each
individual sensor, but instead only require an aggre-
gate function (e.g., sum, average, etc.) of the
collected data from all sensors. The benefit of such
data aggregation is that it can reduce the total
amount of data sent through the network, increas-
ing network performance and decreasing energy
consumption. However, the overall effectiveness of
data aggregation is dependent on where and when
the aggregation actually occurs.
.
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Data aggregation changes the communication in
the network by allowing individual nodes to collect
data samples from multiple sources and combine
them to be transmitted as one sample. Energy can
be saved if the overall amount of data transmitted
in the network is reduced by the aggregation. There-
fore, the energy efficiency of such aggregation is
affected by two metrics aggregation efficiency and
aggregation cost. Aggregation efficiency captures
the amount of data compression achieved by the
aggregation function. If the aggregation of n data
samples results in one new data sample, the aggrega-
tion efficiency is said to be perfect. However, if the
result is simply the n samples concatenated together,
the aggregation efficiency is poor, and only benefits
from merging headers. Although aggregation may
be highly efficient and so significantly reduce the
amount of data transmitted, it is also necessary to
consider the computational cost of the aggregation
in the node. While some aggregation may be cheap
(e.g., simple sum), some aggregation may be compu-
tational expensive (e.g., combining audio samples).

Since the goal of data aggregation is to reduce
redundancy in the communication, the best-suited
delivery network is a tree, where aggregation occurs
when two branches merge. The challenge, therefore,
is to design algorithms that take into account aggre-
gation efficiency and cost to create trees with the
most energy-efficient aggregation points. As dis-
cussed in Section 5.1, if the aggregation algorithm
is perfect (i.e., perfect efficiency and 0 cost), the opti-
mal aggregation tree is a Steiner Tree. Given an
imperfect aggregation algorithm (i.e., less efficient
and some cost), the optimal aggregation tree is a
Weighted Steiner Tree. Although calculating a Stei-
ner Tree, weighted or unweighted, is NP-complete
[2], it is possible to use heuristics to approximate
the target Steiner Tree and use this approximation
as the aggregation tree in the sensor network.

To find the most energy-efficient aggregation tree,
it is necessary to understand the energy efficiency of
the data aggregation algorithm. In this paper, we use
our formulation of aggregation efficiency and cost to
explore the energy efficiency of data aggregation.
Essentially, we show that if the aggregation effi-
ciency is perfect and the cost is free, the aggregation
points should be as close as possible to the sources to
save the most energy. However, as the aggregation
efficiency degrades or the cost increases, the optimal
aggregation points drift towards the sink, since the
savings from the reduced communication no longer
outweighs the extra cost of aggregation.
The main contributions of our research are a
mathematical analysis of when aggregation should
be performed and the design and analysis of
Oceanus [3], a heuristic-based aggregation tree algo-
rithm that approximates the optimal Weighted Stei-
ner Tree for a given aggregation efficiency and cost.
By understanding the tradeoffs between aggregation
efficiency and cost, Oceanus creates trees with
aggregation points closer to the sources when effi-
ciency is high and cost is low and trees with aggre-
gation points closer to the sink when efficiency is
low and/or cost is high. Our evaluation of Oceanus
shows that for most aggregation scenarios, Oceanus
saves energy over the shortest path tree, the oppor-
tunistic method, and the greedy incremental
method. We also notice that in extreme cases, where
the sources are topological isolated from each other,
the opportunistic method outperforms all others,
since little or no aggregation is possible. This is a
limitation of the heuristic-based algorithm. How-
ever, in such cases, if the disjoint sources are treated
independently, Oceanus can again outperform the
other approaches.

The remainder of this paper is structured as
follows. Section 2 presents a brief overview of
related work. Section 3 presents a mathematical
model of in-network data aggregation. Section 4
uses the model to answer the question ‘‘When
should data aggregation be performed?’’ Section 5
presents four aggregation tree algorithms: the opti-
mal tree algorithm and the three heuristic algo-
rithms, including Oceanus. Section 6 presents the
methodology used to analyze the aggregation effi-
ciency space as well as the simulation setup and
our experimental results. Finally, Section 7 presents
conclusions and future directions for our research.

2. Related work

Although several data aggregation algorithms
and frameworks have been proposed [4–8], finding
the optimal aggregation points in the network is still
an open area of research.

Current heuristic-based aggregation tree algo-
rithms use either opportunistic methods (e.g., Direc-
ted diffusion [9]) or greedy incremental methods
(e.g. Intanagonwiwat et al. [10,11]). In opportunistic
methods, data flows through shortest paths from
the sources to the sink. In the event that paths meet,
the paths are joined to form an aggregation point.
Such aggregation points tend to be close to the sink
because shortest path flows from different sources to
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the same sink intersect downstream. In the greedy
incremental methods, one source initiates a shortest
path flow to the sink. Then, the other sources con-
nect to that path via shortest paths, which generally
results in aggregation points closer to the sources.
However, the efficiency of the greedy incremental
method is entirely determined by the first path and
can result in very inefficient aggregation trees. The
main problem with both of these methods is
that they cannot consider aggregation cost and
efficiency.

Many algorithms have been proposed to enable
efficient interest notification ([4,5,7,8,12–14]) as well.
These are a critical component to any sensor net-
work scheme but largely orthogonal to the work
in this paper.

Zhu et al. [15] present an analysis of the limits on
achievable energy improvements through the use of
data aggregation. They use Steiner trees, as in this
work, as the optimal base for their analysis.

Finally, Snader et al. [16] present a distributed
algorithm intended to locate the optimal points of
aggregation in the network. While their algorithm
performs better than opportunistic methods, it per-
forms significantly worse than optimal.

3. Energy-efficiency and data aggregation

Energy efficiency is a driving concern in the
design and implementation of sensor networks.
When using data aggregation, there are three com-
ponents to energy consumption in sensor networks:
the energy consumed by control messages to set up
the aggregation tree for a given event, the energy
consumed by data transmission and reception for
a given event, and the energy consumed by the
aggregation of the data at the aggregation points.
While the energy consumed by the control messages
is relatively fixed for a given network, there is a
direct tradeoff between the energy consumed by
the data transmissions and the energy consumed
by the aggregation. In this section, we define the
energy efficiency of data aggregation, which cap-
tures this tradeoff. In the following section, we show
how our model can be used to determine when
aggregation should be performed.

For a given event, data must flow from the
source to the sink, as determined by an initial inter-
est notification sent from the sink. For the non-
opportunistic approaches, some energy is consumed
during coordination between the sources and the
sink to set up the aggregation tree. Since sensor net-
works are relatively static, this paper focuses on the
energy efficiency of static aggregation tree algo-
rithms. If enough nodes die so that the current tree
can no longer deliver the data, it is necessary to
reconfigure the tree, incurring some energy con-
sumption from control messages. We are currently
investigating the impact of this control overhead
and developing a dynamic aggregation tree algo-
rithm.

Let G = (V, E) be a graph. Let the sources in the
network be si 2 S � V and the sink be k 2 V. Then
the graph M with the minimum cost in terms of
energy can be identified by adding a weight w to
each edge (ei,j 2 E). Let, wi,j be composed of the cost
to receive the data at node i plus the cost to aggre-
gate the data plus the cost to transmit the data to
node j. The acyclic path from all si to k such thatP
8i;jwi;j is minimized will be the optimal aggrega-

tion tree in terms of energy efficiency.
Once sinks and sources have been coupled in the

network, data can flow from the sources to the
sink(s). The energy consumed at each hop of a flow
is determined by the transmission rate (R), the size
of the data to be transmitted (x), where x includes
a header (H) and the data (D), and the power con-
sumption of the network interface while transmit-
ting (Pt). Therefore, the transmission energy to
send data from node i to node j is defined as follows:

T i;jðxÞ ¼
x
R
� P t: ð1Þ

Whenever flows from the same event intersect, it
is possible to combine their data into one flow. The
resulting flow carries the aggregated data (Da) and
only uses one header (H). For example, if n flows
are being aggregated, where a packet from flow m
is [Hm,Dm], the packets from the aggregated flow
are [H,Da], where Da = f(D1,D2, . . . ,Dn).

Although the goal is to reduce the number of
bytes sent and so reduce the energy consumed by
the transmission, it is possible that Ti,j could
increase after the aggregation if

ðH a þ DaÞ >
Xn

m¼1

ðH m þ DmÞ: ð2Þ

In other words, if the aggregation function results in
an aggregate that is larger than the sum of the initial
data sizes plus the size of n � 1 headers, the aggre-
gation function should not be used.

To measure the effectiveness of the aggregation
function, we define aggregation efficiency as follows:
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dðx; yÞ ¼ xin

xout

; ð3Þ

where x and y are the sizes of the two packets of
data to be aggregated, including headers, xin =
x + y, and xout is the total size after aggregation
including the header. If d(x,y) > 1, the aggregation
reduces the number of bytes transmitted, and so re-
duces Ti,j. If d(x,y) < 1, aggregation should not be
performed.

While Ti,j captures the energy to transmit, it is
also necessary to consider the cost of receiving the
data and the cost of executing the aggregation func-
tion. The cost of receiving the data is also a function
of the data size (x) and the power use to receive (Pr),
and is given by:

Ri;jðxÞ ¼
x
R
� P r: ð4Þ

Therefore, reducing the data size via data aggrega-
tion will also reduce the cost of receiving the data
by the downstream nodes. The cost of running the
aggregation function at node i (ci = C(x,y)) must
be low enough so that it does not outweigh the sav-
ings in Ti,j and Ri,j from the aggregation. The cost
function (C(x,y)) depends on the power consump-
tion of the processor, the frequency of the processor,
the number of cycles required by the aggregation
function, etc.

To analyze the effects of aggregation, the result-
ing data size and aggregation costs for a group of
packets must be modeled. Let xm be the sizes of
packets in node i’s queue and n be the total number
of packets in the queue. If no aggregation is per-
formed then total size of data to be sent is simply:

x ¼
Xn

m¼1

xm; ð5Þ

and the cost of aggregation (ci) is 0.
However, if aggregation is used, then the aggre-

gate size of the n packets (an) is given recursively,
where a1 = x1 and xn is the size of the nth packet,
by:

an ¼
ðan�1 þ xnÞ
dðan�1; xnÞ

: ð6Þ

The cost to aggregate at node i (ci), where a1 = x1, is

ci ¼
Xn

m¼2

Cðam�1; xmÞ; ð7Þ

and the single link cost is defined by:

cL ¼ ci þ T i;jðxaÞ þ Ri;jðxaÞ: ð8Þ
The energy efficiency (n) of a data aggregation algo-
rithm performed on n packets of data can then be
defined as follows:

n ¼
T i;j

Pn
m¼1 xm

� �
þ Ri;j

Pn
m¼1 xm

� �
ci þ T i;jðanÞ þ Ri;jðanÞ

: ð9Þ

With these definitions in hand, the question of when
aggregation should be performed can be answered
for various cases.

4. Should aggregation be performed?

The question of whether or not aggregation
should be performed can be broken down into
two cases. The first case is if aggregation can be per-
formed without having to re-route data (i.e., oppor-
tunistically) and the second case is if aggregation
can be performed only if the data is re-routed to
aggregation points. This section handles each of
these cases in turn. For each case, assume that each
individual, un-aggregated flow begins by traveling
to the sink via a shortest path. Furthermore, assume
that to transmit and receive an amount of data x

between any two hops is the same.

4.1. Case 1: No re-routing

The first case involves no changes in path lengths,
and therefore simply comes down to whether or not
the savings in sending and receiving data outweigh
the energy costs of performing the data aggregation.
Let xm be the packets in node i’s queue. Let h be the
number of hops from the aggregation point to the
sink, then if

h T i;j

Xn

m¼1

xm

 !
þ Ri;j

Xn

m¼1

xm

 ! !"

�hðT i;jðanÞ þ Ri;jðanÞÞ
�
> Cið8m; xmÞ;

where an is given by Eq. (6), then aggregation
should be performed.

4.2. Case 2: Re-routing is required

The second case can be further divided into two
sub-cases: one, re-routing maintains shortest path
lengths and two, re-routing increases the path lengths.

4.2.1. Re-routing maintains path lengths

Let the number of hops between a source (s) and
the sink (k) be h. Then the transmission energy from
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s to k (Ts,k) assuming no use of transmit power con-
trol is given by:

T s;kðxÞ ¼ hT s;jðxÞ; ð10Þ

where node j is the first hop away. The total trans-
mission energy for n flows (sm), each hm hops away
respectively without aggregation is as follows:

T sn;kðxnÞ ¼
Xn

m¼1

hmT sm;jðxmÞ; ð11Þ

and the total cost of aggregation is trivially 0. Now
for aggregation, assume an aggregation point is lo-
cated at node g, which is hsm;g hops from each of
the sm sources and hg,k hops away from the sink.
Then the total transmission energy T sn;kðanÞ is given
as follows:

T sn;kðanÞ ¼
Xn

m¼1

hsm;gT sm;jðxmÞ
" #

þ ½hg;kT g;jðanÞ�; ð12Þ

where an is given by Eq. (6).
But, since none of the path lengths have changed,

the energy savings (Es) can be given by the savings
over the hops for which the data was aggregated
as follows:

Es ¼
Xn

m¼1

hg;kðT sm;jðxmÞ þ Rsm;jðxmÞÞ
" #

� ½hg;kðT g;jðanÞ þ Rg;jðanÞÞ�; ð13Þ

and aggregation should be performed if

Es > Cgð8m; xmÞ: ð14Þ
4.2.2. Re-routing increases path lengths
Again, let the number of hops between a source

(s) and the sink (k) be h. Then the transmission
energy from s to k (Ts,k) is given as in Eq. (11).
However, the case for aggregation is more complex,
essentially there is an extra term that must be con-
sidered in Eq. (13). For each flow, any increase in
path length must be taken into account, therefore,
let n0m be the new path lengths. Then the energy con-
sumed due to the extra path lengths can be
expressed as

Xn

m¼1

ðh0sm;g
� hsm;gÞðT sm;jðxmÞ þ Rsm;jðxmÞÞ: ð15Þ

Notice that this equation takes into account the pos-
sibility that some paths may also be shortened. The
total energy savings in the face of path length
changes is then:

Es ¼
Xn

m¼1

hg;kðT sm;jðxmÞ þ Rsm;jðxmÞÞ
"

� hg;kðT g;jðanÞ þ Rg;jðanÞÞ
#

þ
Xn

m¼1

ðh0sm;g
� hsm;gÞðT sm;jðxmÞ þ Rsm;jðxmÞÞ

" #
;

ð16Þ

and aggregation should be performed if

Es > Cgð8m; xmÞ: ð17Þ

Clearly, the choice to aggregate depends on the rela-
tionship between the aggregation efficiency, the cost
of aggregation, and the path length increases. This is
the most complex case and choosing optimal aggre-
gation trees in the face of this constraint is NP-
complete, which will be discussed in Section 5.1,
therefore, even a centralized solution must use some
heuristic methods.

Essentially, as the aggregation efficiency increases
and the cost of the aggregation decreases, it is more
efficient to aggregate close to the sources. As the
aggregation efficiency decreases and the aggregation
cost increases, the most efficient aggregation points
migrate towards the sink. Current research, how-
ever, tends to look at algorithms for creating aggre-
gation trees and aggregation energy efficiency in
isolation. In the next section, we present various
aggregation tree algorithms and discuss if and how
they can integrate energy efficiency.

5. Aggregation tree algorithms

The focus of this work is on the effects of data
aggregation efficiency on choosing the aggregation
tree in sensor networks. There has been significant
work in the areas of finding clusters of nodes among
which to shift aggregation points to increase net-
work lifetime [17–20] and building general routing
policy frameworks [6], but these are orthogonal to
this work. In this section, we describe the optimal
aggregation tree algorithm and then consider three
heuristics used to construct aggregation trees in sen-
sor networks. The three heuristics are opportunistic,
greedy incremental, and Oceanus. In the following
sections, we evaluate the effect of energy efficiency
on each of these algorithms.
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5.1. Optimal aggregation

The problem of finding a lowest cost aggregation
tree can trivially be reduced to the problem of find-
ing a Steiner tree in the graph. Formally, the Steiner
tree of some subset of the vertices of a graph G is a
minimum-weight connected subgraph of G that
includes all of the vertices.

Let G(V, E) be the set of all nodes in the sensor
network with non-negative weights for each e 2 E

corresponding to the cost to transmit data over link
e. Let Z � V be the set of source nodes (si 2 S, where
S � Z) and the sink (k). The cost function is in terms
of energy consumed on each link for transmission of
data across that link. If the cost function for assign-
ing the weights includes data aggregation (see Sec-
tions 3 and 4), finding the subnetwork T � G such
that every pair of vertices in Z is connected and
the total cost of T is a minimum is equivalent to find-
ing the minimum cost aggregation tree. However,
this is the Weighted Steiner Tree.

The determination of a Weighted Steiner Tree is
NP-complete [2]. Even if the edge weights are all
equal (corresponding to a perfect aggregation
algorithm), the problem remains NP-complete.
Therefore, it is infeasible to calculate the optimal
aggregation tree and heuristics for efficiently con-
structing aggregation trees are needed.

5.2. Opportunistic aggregation

Opportunistic aggregation only aggregates
streams if they happen to intersect on their way to
the source, (e.g., Directed diffusion [9]). To achieve
opportunistic aggregation, each source begins send-
ing streams to the receiver via shortest path routes.
As streams intersect, they are aggregated.

Aggregation points are always downstream,
towards the sink. The more dispersed the source
nodes are from each other in the network, the less
likely aggregation is performed. Such trees are bene-
ficial if the energy efficiency of the aggregation is low,
meaning that the savings from aggregating early does
not outweigh the additional communication cost.
However, opportunistic aggregation is less likely to
result in energy efficient aggregation trees for aggre-
gation functions with high efficiency and low cost.

5.3. Greedy incremental aggregation

The Greedy incremental aggregation algorithm
(e.g., Intanagonwiwat et al. [10]) begins by sending
a single stream via a shortest path route to the sink.
Each additional stream is then routed to a node par-
ticipating in the first flow via a shortest path. This
method prevents two streams from spanning the
entire network only one hop apart.

Aggregation trees derived from this sort of algo-
rithm often have aggregation points that lie some-
where in the middle of the network. This can yield
significant efficiency gains over opportunistically
created aggregation trees in cases where the aggre-
gation algorithm has moderate to high energy
efficiency.

5.4. Oceanus

Oceanus approximates the aggregation tree pro-
viding the most energy-efficient communication
using knowledge of the energy efficiency of the
aggregation algorithm. Oceanus uses a heuristic-
based algorithm that approximates a Weighted Stei-
ner Tree, where the weights reflect the energy effi-
ciency of the aggregation algorithm. To start,
Oceanus randomly chooses one of the source nodes.
It then finds the node in Z that is closest to the cho-
sen node using a shortest path algorithm where the
weights on the paths are given by the energy model
in Section 3. These nodes are connected by this
path. Then, the next node in Z that is closest to
the tree that has been already formed is chosen
and connected, and so on until a complete tree is
obtained. The aggregation tree is calculated accord-
ing to the algorithm depicted in Fig. 1.

It is simple to see that this method results in each
closest sensor node being connected via a least-cost
path, where cost is defined in terms of Eq. (8). Since
this is only a heuristic, it is possible that this is not
the Weighted Steiner tree. If two nodes can be con-
nected via two different least-cost paths, the inter-
mediate node that is chosen may be farther away
from all of the remaining unconnected nodes than
the other choice of intermediate node.

To find the aggregation tree, we assume that the
sink node has knowledge of the sensor network
topology. When an event of interest happens, each
sensor node sends an initial notification of event
to the sink node. At that time, the sink calculates
the aggregation tree and informs the source nodes
and the aggregation nodes of the paths to follow.
Currently, an aggregation tree is calculated for each
independent event in the network, for each sink.
This is an implementation detail however, and could
be altered in future versions.



Fig. 1. Oceanus aggregation tree algorithm.
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6. Evaluation

In this section, we analyze the three data aggrega-
tion tree algorithms. The goal of this analysis is to
determine the most energy-efficient aggregation tree
given varying levels of aggregation efficiency.

We analyze the aggregation tree algorithms in
terms of the amount of energy spent transmitting
sensor data. Because the algorithms are imple-
mented in the ns2 network simulator [21], the link
energy model in Eq. (8) is used to provide the energy
analysis.
6.1. Simulation setup

The sensor network consists of a 100 node net-
work laid out on a grid. Each node in the middle
of the grid has 8 one-hop neighbors. The sensor
data size is 64 bytes and the packet header size is
6 bytes. Each node has a transmit power of
36 mW and a receive power of 5.4 mW. These val-
ues were chosen to model a common sensor node
[22]. The data transmission rate of the nodes is
40 Kbps.

We consider three sensor scenarios. The first sce-
nario is where an event occurs at the corner of the
sensor network (see Fig. 2, nodes 1–5 are sources).
This is a common model for data aggregation stud-
ies. The second scenario is where an event occurs in
the middle of the network (see Fig. 2, nodes A–E are
sources). The final scenario is where events occur at
the edges of the network (see Fig. 2, nodes U–Z are
sources).

In all scenarios, the sink is placed near the bottom
edge of the network. For the simulations, no mobil-
ity is used since we assume a static sensor network.
Additionally, we do not consider node failure.
Finally, all results are the averages of 30 runs, with
the sink nodes being placed randomly along the edge
of the network and the source nodes being placed in
different spots throughout the network, but in the
same configuration, depending on the scenario. In
this work, we do not present results varying the num-
ber of source nodes, however, these results are simi-
lar until the number of source nodes approaches 20%
of the nodes in the network.
6.2. Experimental results

Two groups of results are presented in this sec-
tion. The first group evaluates the performance of
Oceanus, the opportunistic algorithm, the greedy
incremental algorithm, and sending the data via
shortest path routes for a perfect aggregation algo-
rithm with no cost. The second group of results
evaluates the performance of these methods across
aggregation algorithms with varying aggregation
efficiencies, but no aggregation cost. Varying the
aggregation cost has the same effect. For all experi-
ments presented here, we consider only the energy
expenditure of nodes within the aggregation tree.
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This is reasonable because the focus of this paper is
finding the minimum cost aggregation trees in
terms of energy. Developing algorithms for putting
nodes to sleep that are not part of the aggregation
tree is outside the scope of this work. A 95% confi-
dence interval of ±2% was maintained for all
results.
6.2.1. Perfect aggregation

The results in this section use a perfect aggrega-
tion function. There is no cost for aggregation and
the amount of data sent after aggregation is
64 bytes, the same as a unit of sensor data, no mat-
ter how many flows are being aggregated. There-
fore, the optimal aggregation trees aggregate flows
as close to the sources as possible. These experi-
ments explore the most efficient end of the aggrega-
tion spectrum. For each of the three algorithms
tested, opportunistic, greedy incremental, and
Oceanus, the algorithms are run over 10 varying
networks conforming to the three basic configura-
tions. The results presented are the average results
from these runs. The graphs in this section are nor-
malized to the energy expenditure in mJ of sending
each sensor’s data via a shortest path link with no
aggregation. This yields percentage savings over
the shortest path, no aggregation method for each
of the algorithms.

Fig. 3 depicts the energy savings for networks
where the sensors are clustered in a corner of the
network. Because the nodes are clustered, the
opportunistic algorithm has a reasonable likelihood
of causing two streams to flow to the sink only one
hop away from each other. However, the greedy
incremental algorithm is able to aggregate the flows
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somewhat near to the sources. Oceanus, on the
other hand, links all of the nodes together in a
chain, aggregating at the sources, and transmits
through the closest node to the sink with high prob-
ability. Oceanus uses 26% less the energy then the
baseline and about 15% less than the greedy incre-
mental algorithm.

Fig. 4 depicts the energy savings for networks
where the sensors are surrounding an event in the
middle of the network. In this scenario, it is likely
that the nodes on the side of the event away from
the sink will aggregate with nodes closest to the sink
rather early. For the greedy incremental algorithm,
it is more likely that the nodes aggregate close to
the sources. Oceanus sends data around the event
in a ring, aggregating at each source, and then con-
nects the ring to the sink via one of the source
nodes. Oceanus uses 40% less energy then the base-
line and about 10% less energy than the greedy
incremental algorithm.

Fig. 5 depicts the energy savings for networks
where the sensors are on different edges of the net-
work. This scenario represents a difficult case. With
high probability, the opportunistic algorithm can
only aggregate those nodes in each sector of the net-
work. Therefore, it is likely that multiple indepen-
dent streams will be sent through the network
without aggregation. The greedy incremental algo-
rithm will likely send all data across the center of
the network, aggregating in the middle, depending
on which stream begins first. Oceanus routes data
around the edges of the network, in a large circle,
from source node to source node, aggregating at
the sources. Oceanus uses 43% less energy than the
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Fig. 4. Perfect aggregation, Network 2.
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Fig. 5. Perfect aggregation, Network 3.
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baseline and about 10% less energy than the greedy
incremental algorithm. This scenario is the worst
case for the opportunistic algorithm. As expected,
the greedy incremental method and Oceanus
perform well, with Oceanus providing greater energy
efficiency by routing through all of the source nodes.
Therefore, for perfect aggregation functions, Oce-
anus outperforms all other aggregation methods.

The total energy consumed for varying lengths
of data flows from 1 sensor data packet from each
sensor to 100 packets from each sensor was also
tested for perfect aggregation. The longer the flows
go on, the cost of setting up the aggregation tree is
amortized over the length of the flow. For each of
the three algorithms tested, opportunistic, greedy
incremental, and Oceanus, we ran the algorithms
over 10 varying networks conforming to the three
basic configurations. This showed the trends in
the data over a range of lengths of flows. Since
none of the aggregation trees can be set up before
the first packets are received, all of the algorithms
have the same energy consumption as the Shortest
Path flows. However, as the flows progress, each of
the algorithms’ energy consumptions diverge. As
expected, the results remained the same as pre-
sented in Figs. 3–5, with the gaps between the tree
algorithms increasing roughly linearly as the flow
lengths increased.
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Fig. 6. Energy consumption vs. aggregation efficiency,
Network 1.
6.2.2. Varying the aggregation efficiency

The locations of the optimal aggregation points
depends on the efficiency of the aggregation algo-
rithm. Oceanus attained the most efficient commu-
nication for perfect aggregation functions by
aggregating data close to the source nodes. How-
ever, as the efficiency of the aggregation algorithm
decreases, the optimal aggregation points move clo-
ser to the sink node.

The graphs in this section present the amount of
energy to send 100 sensor packets from each sensor
node to the sink using the three aggregation meth-
ods (opportunistic, greedy incremental, and Oce-
anus) as well as shortest path routing. The x-axis
of the graphs represent the amount of data com-
pression achieved by the aggregation function.
One represents a perfect aggregation function and
zero represents simple concatenation.

Fig. 6 depicts the energy consumed for varying
aggregation efficiencies in a network where the
sources are in the corner of the network. The
opportunistic algorithm curve is rather linear, as
expected. This is because the data aggregation is
performed only if shortest paths from the source
nodes cross. Therefore, it is affected least by
changes in the aggregation efficiency. Both the
greedy incremental method and Oceanus begin to
perform more poorly as the aggregation efficiency
decreases. This is because the benefit of aggregation
shrinks below the possible increase in hops a flow
makes to reach an aggregation point. However,
because the sources are collected in a corner of
the network, no path is lengthened significantly.
Therefore, both the greedy incremental algorithm
and Oceanus continue to outperform the opportu-
nistic by a significant margin, with Oceanus always
being the most efficient.

Fig. 7 depicts the energy consumed for varying
aggregation efficiencies in a network where the
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Fig. 7. Energy consumption vs. aggregation efficiency,
Network 2.
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sources are circled around an event in the middle of
the network. Again, the curve for the opportunistic
method is roughly linear as expected and both the
greedy incremental algorithm and Oceanus begin
to suffer as the aggregation algorithm becomes less
efficient. This time however, the greedy incremental
algorithm begins to consume more energy than the
opportunistic algorithm for efficiencies close to sim-
ple concatenation. This is because some paths are
lengthened to reach aggregation points, but the
gain in aggregation no longer outweighs these path
increases. Oceanus continues to be the most effi-
cient algorithm in this case as well. This is because
its gains in aggregation follow along the shortest
links to the source node and therefore still outweigh
any increases in path length.
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Fig. 8. Energy consumption vs. aggregation efficiency,
Network 3.
Fig. 8 depicts the energy consumed for varying
aggregation efficiencies in a network where the
sources are around the sides of the network. As the
graph shows, it is the worst case for Oceanus at poor
aggregation efficiencies. Around 82% aggregation
efficiency, the opportunistic algorithm begins to out-
perform Oceanus. This is because, the Oceanus algo-
rithm always tries to perform some aggregation, but
in this case, this causes poor performance for the
worst aggregation efficiencies. However, Oceanus
continuously outperforms the greedy incremental
algorithm.
6.2.3. Summary

Oceanus significantly outperforms both the
opportunistic method as well as the greedy incre-
mental method of aggregation for perfect aggrega-
tion functions. Furthermore, in all three network
scenarios, Oceanus outperforms the greedy incre-
mental method for all aggregation function efficien-
cies. However, for aggregation efficiencies in the
worst 18%, the opportunistic method outperforms
Oceanus in the scenarios where the sources are
scattered on all sides of the network. However, this
scenario is unlikely, since it is rare that data from
events occurring in completely different areas of
the network will be aggregated. Therefore, in most
realistic scenarios, Oceanus outperforms both the
opportunistic method and the greedy incremental
method of data aggregation. This is because Oce-
anus takes into account the energy efficiency of
the aggregation algorithm in creating its aggrega-
tion trees. Finding efficient data aggregation algo-
rithms is itself the topic of other work; however,
the more efficient the aggregation algorithms, the
more efficiently data can be transmitted through a
sensor network.

One important point to bring up is that Oceanus
often times aggressively aggregates data in the net-
work. This means that the loss of an aggregate
packet results in the loss of a great amount of data.
There may be a desire to trade off the amount of
loss with the energy savings from aggregation effi-
ciency. To this end, algorithms to decide what data
is aggregatable could be used to partition data of
the same types into independent groups, essentially
forcing redundancy in the network. The creation of
such algorithms is beyond the scope of this
paper and is also orthogonal to the Oceanus
algorithm.
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7. Conclusions and future work

This paper has explored the aggregation effi-
ciency space and where aggregation points should
be located within a sensor network to provide
energy efficient communication. We have demon-
strated that for high energy efficient aggregation
algorithms, aggregation points should lie close to
the sources of the data. However, as aggregation
efficiency decreases, aggregation points should be
migrated towards the sink. Therefore, we present
Oceanus, which builds the aggregation trees based
on the efficiency of the aggregation algorithm. We
have shown that Oceanus outperforms both the
opportunistic and the greedy incremental methods
over a range of network topologies and aggregation
efficiencies.

This analysis suggests a future direction for
aggregation tree algorithm design. A distributed
algorithm that migrates the aggregation points
towards the source for high-efficiency aggregation
algorithms and towards the sink for low efficiency
algorithms is a future direction. Future work also
consists of finding energy efficient means of taking
care of failures in the network and adding load-bal-
ancing. We have not implemented any load balanc-
ing mechanism, or fault tolerance into Oceanus.
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