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Abstract—One of the key features of high speed WLAN such
as 802.11n is the use of MIMO (Multiple Input Multiple Output)
antenna technology. The MIMO channel is described with fine
granularity by Channel State Information (CSI) that can be
utilized in many ways to improve network performance. Many
complex parameters of a MIMO system require numerous samples
to obtain CSI for all possible channel configurations. As a result,
measuring the complete CSI space requires excessive sampling
overhead and thus degrades network performance. We propose
CSI-SF (CSI Sampling & Fusion), a method for estimating CSI for
every MIMO configuration by sampling a small number of frames
transmitted with different settings and extrapolating data for the
remaining settings. For instance, we predict CSI of multi-stream
settings using CSI obtained only from single stream packets. We
evaluate the effectiveness of CSI-SF in various scenarios using
our 802.11n testbed and show that CSI-SF provides an accurate,
complete knowledge of the MIMO channel with reduced overhead
from traditional sampling. We also show that CSI-SF can be
applied to network algorithms such as rate adaptation, antenna
selection and association control to significantly improve their
performance and efficiency.

I. INTRODUCTION

While the deployment of 802.11 WLANs (Wireless Local

Area Networks) is continuously increasing, the demand for re-

liable high bandwidth WLANs is exploding due to the demands

of applications such as HD (High Definition) video streaming.

Additionally, with the increasing popularity of smartphones,

Wi-Fi offloading [1] alleviates the load on low throughput

cellular links, but increases the bandwidth demand for Wi-Fi.

In response to this growing demand of applications and

services, the new IEEE 802.11n [2] and the emerging IEEE

802.11ac [3] standards aim to provide very high throughput

WLANs by improving on the existing 802.11 standards. Some

of the key enhancements used for increasing the PHY through-

put are using wider, bonded channels (40 MHz in 802.11n

and up to 160 MHz in 802.11ac) and MIMO (Multiple Input

Multiple Output) antennas [4], [5]. Currently available 802.11n

devices support up to three MIMO spatial streams.

To achieve improved performance at MAC and application

layers, algorithms and protocols for WLANs now need to con-

sider these new features offered by the use of multiple antennas.

For instance, while before rate adaptation only selected the

modulation and coding rate, it now needs to consider the num-

ber of concurrent spatial data streams transmitted. Essentially,

optimal WLAN performance required detailed knowledge of

the wireless link. Such information is available through the

use of Channel State Information (CSI), which describes the

current condition of the channel, and consists of the attenuation

and phase shift experienced by each spatial stream to each

receive antenna in each of the OFDM subcarriers. CSI is

determined in the 802.11n hardware by analyzing received

packets using training sequences in the packet headers. For

network algorithms such as rate selection, AP association and

channel assignment, timely optimal decisions require accurate

CSI estimates under various settings (e.g., different number

of spatial streams, transmission antennas used, transmission

powers, etc.). However, some settings might not have been

sampled for recently received packets and so additional frame

transmissions are necessary to obtain a complete and fresh CSI.

These extra transmissions consume bandwidth and increase

latency, and ultimately degrade system performance if over

used.

To enable the effective use of CSI, we present CSI-SF

(Channel State Information with Sampling and Fusion), a CSI

processing technique that predicts the CSI of non-sampled

MIMO configurations, using a small number of samples. Proto-

cols using CSI-SF can predict the CSI of a 3×3 channel using

CSI measured from packets sent using a 1×3 configuration. We

evaluate the accuracy of CSI-SF by comparing its CSI estimates

against the actual measured channel conditions in our 802.11n

testbed. We also describe the practical challenges of accurately

estimating CSI and assess CSI-SF without the knowledge of

hardware specific characteristics. We demonstrate how network

algorithms such as rate adaptation, antenna selection, and

association control can utilize CSI-SF to enhance the efficiency

and hence improve network performance.

The rest of this paper is organized as follows. In Section II,

we survey the related work and describe the motivations that

led us to the development of CSI-SF. In Section III, we provide

the analytical foundations of our technique, and in Section IV,

we present results of its application in real-world traces that

we collected in the evaluation of CSI-SF on our 802.11n

testbed. In Section V, we discuss application uses of CSI-SF

and Section VI concludes the paper.

II. CHANNEL QUALITY METRIC

A. Related Work

Wireless network algorithms maximize the network per-

formance by using channel quality information to fine tune

protocol configurations (e.g., modulation, coding rate, number



of streams, set of transmit antennas, transmission power, etc.).

For example, many rate adaptation algorithms such as ARF [6],

AARF [7] and SARA [8] probe the channels to collect sta-

tistical information at different bitrates. These probing-based

schemes incur excessive messaging overhead when there is a

large number of configurations to probe. Additionally, it takes

long to converge, especially when the gap between the rate

of the probed packets and the optimal rate is large. Moreover,

optimal bitrate selection requires the differentiation of losses

from wireless errors and losses from collisions/congestion [9],

[10], [11].

Many algorithms take an alternative approach and use Signal

to Noise Ratio (SNR) as the channel quality metric (e.g.,

RBAR [12]). SNR is easy to compute and is already provided

by current 802.11 hardware. However, it was shown that

wireless networks have complex error distributions and SNR

does not well-represent channel quality [13], [14]. In particular,

the authors of [15] show that SNR is not the right metric to

determine achievable throughput, in large part due to the fact

that the frequency selectivity of the wideband 802.11 channel

is not captured by SNR. Moreover, in OFDM modulation,

subcarriers with a low SNR have a stronger effect on the overall

probability of error.

Recent standards such as IEEE 802.11n [2] and 802.11ac [3]

utilize MIMO transceivers [4], [5], which increase the degrees

of freedom and so the complexity of rate selection. Essentially,

along with selecting modulation and coding schemes, rate

selection algorithms must now choose the correct number of

concurrent data streams. Optimizations can be based on the CSI

read from the 802.11 hardware. In [16], [15], [17], the detailed

information in the CSI report is used to determine the SNR

value for each subcarrier (̺s), as opposed to a single average

value as in the general SNR metric. The subcarrier-specific

SNR is then aggregated into a global metric, effectiveSNR

(eSNR), which better characterizes channel performance. We

next provide an introduction to CSI.

B. Channel State Information

Wireless signals experience transformations such as ampli-

tude and phase changes while traveling over the air from the

transmitter to the receiver. For example, a simple model is

y[t] = h · x[t] + z[t], (1)

where t is a time index, y is the received signal, x is the trans-

mitted signal, h is the channel gain, or more often a complex

value representing both channel gain and phase component, and

z is additive noise. More complex models incorporate multipath

fading, time-varying channels, multiple antennas, etc. Coherent

receivers require knowledge of CSI (h in the simple model

(1) above) for successful demodulation. CSI can also be used

for data rate selection, antenna selection, power control and

allocation across transmit antennas, etc.

One method of obtaining CSI is to use pilot sequences within

the data packet. These sequences are predetermined sequences

(i.e., they do not carry information) that are sent within the data

packet to help the receiver estimate CSI. For example, in the

channel model (1), setting x = 1 in the first k symbols of the

data packet allows the receiver to compute

ĥ =
α

k

k
∑

t=1

y[t] = α · h+
α

k

k
∑

t=1

z[t] (2)

where the constant α is chosen appropriately depending on the

SNR.

The 802.11n protocol allows the use of MIMO to obtain im-

provements in data rate and reliability. In addition, 802.11n uses

OFDM modulation to convert a wideband channel into multiple

narrowband channels to avoid inter-symbol interference (ISI).

The simple model (1) can be extended for a MIMO OFDM

system as follows:

y[w, t] = H[w]x[w, t] + z[w, t] (3)

where for n transmit and m receive antennas, x is an n-

dimensional vector, y and z are m-dimensional vectors, H is

an m × n matrix, and w is an index specifying the OFDM

frequency channel. In MIMO OFDM systems, the CSI H is an

m× n×W data structure, where W is the number of OFDM

channels used in the system (W = 56 in 802.11n for 20 MHz

bandwidth, and W = 114 in 802.11n for 40 MHz bandwidth

with channel bonding). Note that in (3) the column index of

H[w] indicates the transmit antenna index, while the row index

of H[w] corresponds to the receive antenna index.

C. CSI Estimation in 802.11n

Many implementations of 802.11n require successful decod-

ing of a data packet to obtain CSI. In addition, it is required to

send a packet using n transmit antennas over a bandwidth W ,

and receive it over m receive antennas to obtain the complete

m × n × W CSI data structure. In the following, we denote

any type of communication scheme that involves n transmit

antennas, m receive antennas, and spans a bandwidth W as an

m× n×W configuration.

In current CSI estimation approaches, obtaining CSI for all

possible configurations of a 3× 3 system requires seven sam-

ples: 1-stream Modulation and Coding Schemes (MCS) require

three probes, one per each TX antenna. Similarly, 2-stream

MCSs require three probes to collect CSI for each combination

of two antennas. Finally, 3-stream MCSs require a single probe

using a transmission from all three transmit antennas. The

number of required samples increases dramatically when the

system supports 4×4 communication or larger channel widths.

Moreover, common hardware only provides CSI reports for

unicast packets, thus limiting the possibility of opportunistically

collecting CSI matrices by eavesdropping; a node must be

connected to an access point to actively send or receive probing

packets.

In the rest of this paper, we discuss the problem of estimating

p × q × R CSI data structures using packets encoded with

mi × ni × Wi schemes, where p ≥ mi, q ≥ ni, R ≥ Wi,

and (p, q, R) 6= (mi, ni,Wi), where i is the packet index.

We then show how CSI data structures obtained from multiple

packet transmissions can be used to to estimate larger CSI

data structures. We describe this problem in the context of an



802.11n system. However, similar ideas can be applied to CSI

estimation in other MIMO OFDM systems (e.g. WiMAX).

III. CSI-SF

CSI-SF reduces the overhead of channel probing by aggre-

gating the CSIs obtained from multiple packets from a smaller

channel to derive the CSI corresponding to a larger channel.

For example, CSI-SF enables the determination of a 2×2×56
CSI matrix by combining the CSI information derived from two

packets transmitted using a 2 × 1 × 56 configuration, as long

as different transmit antennas are used to send the two packets.

Combining the CSI from multiple packets can be used to:

• estimate a larger multi-antenna m×q×W CSI matrix using

packets sent/received with a smaller multi-antenna m×n×W

configuration (i.e., q > n);

• estimate a larger bandwidth m × n × R CSI matrix using

packets sent/received with an smaller bandwidth m×n×W

configuration (i.e., R > W );

• estimate a CSI matrix combining the above two cases

(i.e. enlarge the number of antennas and bandwidth in the

combined CSI).

A. Enlarging the Number of Antennas or Bandwidth in the CSI

Matrix

The key benefit of CSI-SF is in combining CSI from multiple

packets to create a CSI matrix corresponding to more transmit

antennas than those used in the given packets. To capture the

space of this combination, let Ni be the set of antennas used in

packet i, of size |Ni|, and let N be the set of transmit antennas

in the combined CSI matrix. We assume that |N | > |Ni| for all

i ∈ I, where I is the set of packets used to combine the CSI.

We require N ⊂ ∪iNi so that we have CSI for all transmit

antennas in N .

Combining CSI from a smaller set of transmit antennas to

infer CSI matrix for a larger set of antennas requires that the

transmitter changes the set of transmit antennas used in each

packet. In addition, the set Ni of transmit antennas used in

packet i needs to be identified within the packet. This can be

done, for example, by adding metadata about Ni to the header

or payload of the packet. Similarly, CSI combining used to

enlarge the number of frequency subchannels in the CSI matrix

(e.g., to go from 20 MHz to 40 MHz bandwidth) needs different

packets transmitted in different channels (e.g., channels 36 and

40 of the 5 GHz band) so that CSI derived from those packets

can be combined to estimate the CSI matrix of the bonded

channel 36+40.

B. Power Scaling

The CSI estimates produced by the receivers are dependent

on the transmission power used for the packet. However, if

transmission power is constant, CSI combining does not depend

on transmission power. Essentially, if the channel gains remain

constant during the transmission of the two packets and P2 =
γP1, where Pi is the transmission power of packet i, i = {1, 2}
and γ is a scale factor, then CSI2 =

√
γCSI1, where CSIi is

the CSI estimate produced for packet i.
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Fig. 1. MIMO channel with precoding matrix Q. The dependency on time
or frequency is omitted.

Due to regulations and practical limitations, transmitted

signals have a total power constraint. When the transmission

spans multiple transmit antennas, assuming that the signals

in the different antennas and OFDM sub-channels are statis-

tically independent, the total transmitted power is given by

P =
∑W

w=1

∑n

i=1
Pi[w], where Pi[w] is the power in the

signal transmitted in antenna i, i = 1, . . . , n and frequency

sub-channel w, w = 1, . . . ,W . In order to satisfy the total

power constraint, Pi[w] may vary for different configurations

with different bandwidths or number of transmit antennas, even

when the power settings specified by the driver is the same.

These power considerations have important implications for

CSI combining. Since the transmission powers may not be

known at the receiver (see Model (3)), the CSI estimate for

entry (i, j) in sub-channel w of the channel matrix H may

be an estimate of Hi,j [w]
√

Pj [w]. Since Pj [w] may vary

for communication schemes involving different numbers of

transmit antennas and different transmission bandwidths, CSI

estimates must be appropriately scaled during CSI combining.

If the total power setting is not changed between packets,

this scaling is based only on the number of streams, and

no information about the power settings at the transmitter is

required.

C. Precoding

Spatial multiplexing is achieved by sending different data

streams in the different entries of x (see Model (3)). The

802.11n standard allows the use of a precoding matrix Q to

map x into the channel. Typically, Q is a unitary matrix (i.e.

Q · Q† = Q† · Q = I , where † denotes conjugate transpose

and I is the identity matrix). Equation (3) represents the so-

called direct mapping mode, in which Q = I and each data

stream is sent in a different transmit antenna. More generally,

the received signal vector can be written as (see Fig. 1)

y[w, t] = H[w]Qx[w, t] + z[w, t]. (4)

Typically, the precoding matrix Q does not need to be

known at the receiver, and the channel estimation algorithm

provides an estimate of H[w]Q. The CSI-SF combining tech-

nique requires the receiver to know Q and post-multiply the

channel estimates Ĥ[w] by Q† or Q−1 if Q is not unitary (i.e.,

Ĥ ′ = Ĥ · Q†). However, Q varies based on the chipset used,

and may also be changed adaptively. In the rest of this section,

we assume that Q is known. In Section IV, we investigate the

loss in performance of implementing a Q-agnostic estimator.

To understand the combining process, consider the following

example illustrating how to combine CSI from two packets
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Fig. 2. Schematic representations of the operations used to combine CSI from
multiple packets.

sent/received with an 3 × 2 × 56 configuration and precoding

matrix Q2 to form a CSI estimate for a 3×3×56 configuration

(see Fig. 2). We assume that N1 = {1, 2}, N2 = {2, 3}
and N∋ = {1, 2, 3}. Similar operations are performed for

the remaining 55 sub-channels. After successful reception of

packet i, i ∈ {1, 2}, the receiver generates a CSI estimate

for sub-channel w, Ĥi[w], which may be dependent on the

transmission power in each antenna and frequency sub-channel.

Next, the receiver post-multiplies Ĥi[w] by Q
†
2

obtaining

Ĥ ′
i[w] = Ĥi[w] · Q†

2
= [ĥ1,i[w], ĥ2,i[w]], where ĥi,j [w] ∈ C

2,

i, j ∈ 1, 2. The combined CSI for sub-channel w, after power

scaling, is given by

Ĥ3[w] =

√

2

3
· [ĥ1,1[w], ĥ1,2[w], ĥ2,2[w]] ·Q3.

Note that ĥ2,1[w] and ĥ1,2[w] contain CSI that can be used to

generate Ĥ3[w]. CSI-SF only used ĥ1,2[w] in the combined CSI

estimate because wireless channels often experience variations

over time and the most recent CSI is often the most suitable to

make future estimates. However, more general combining func-

tions can be used to balance the effects of channel variations

and channel estimation errors due to, for example, noise. One

such example is

Ĥ3[w] =

√

2

3
·[ĥ1,1[w], (βĥ1,2[w]+(1−β)ĥ2,1[w]), ĥ2,2[w]]·Q3,

where β ∈ [0, 1]is some constant chosen appropriately.

D. Transmission Power Compensation

In most WLAN deployments, dynamic transmission power

is used in combination with rate control to reduce energy

consumption. Commodity hardware allows the user to choose

a transmission power level. If the transmitted power closely

follows the level chosen by the user, a scale factor can be

applied to the CSI of a packet transmitted at a specific power

level to estimate the CSI of a different power level. For

example, if a receiver receives a packet sent at 7 dBm and

is interested in the estimated CSI for a transmission with the

same antenna configuration at 5 dBm, it is enough to subtract

2 dB from the magnitude of the original CSI to obtain the new

one.
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Fig. 3. SNR for different tx power levels for four 1-stream MCSs.

However, practical limitations influence the power control

capabilities of real transceivers. Power amplifiers are not per-

fectly linear, producing increasing distortion as they are driven

closer to their maximum rated power. The distortion introduced

by the transmitter amplifiers has a bigger impact on MCSs

with larger coding rates and higher order modulations. As a

result, many transceivers limit the output power used for high

rate MCSs through various power caps. Figure 3 shows these

power caps for QAM-64 transmissions with different coding

rates. The same behavior is present for 2- and 3-stream MCSs,

but the linear region extends to higher power settings. This is

most likely a result of the fact that for multiple stream packets

the power is split among the multiple streams, reducing the

power that each amplifier is required to output.

An accurate power profiling can prevent two erroneous

outcomes in the CSI estimation procedure. First, when using

the CSI derived from a packet with a specific MCS to estimate

the CSI of a different MCS, not being aware of the power caps

might introduce estimation errors. This happens not only when

combining CSI to produce estimates for a different number of

streams, but also when using the CSI from a given MCS to

estimate the CSI for some other MCS with the same number

of streams. Additionally, this information must be considered

when estimating the effect of power adaptation. For example

scaling the nominal transmission power from 10 dBm to 15

dBm has no effect on the actual transmitted power (and power

consumption) in MCS7.

To correct power scaling requires two pieces of information:

• The power profile for the specific hardware installed in

the transmitter. This information can be hard coded in the

receiver or sent on demand by the transmitter.

• The power level at which each packet is sent. This infor-

mation can be specified explicitly by the transmitter with a

d control packet or attaching it to data packets, or inferred

from the packet type (e.g., beacons are generally transmitted

at the lowest data rate and the highest power level).

The 802.11n standard provides an optional feature called

staggered sounding by which the training sequence in the

packet header is transmitted over more streams than those

used in the payload of the packet. This feature would enable



us to learn a larger CSI structure without risking a decoding

error in the payload of the packet. While this feature would

solve the same problem that we are addressing, it presents a

number of drawbacks and practical limitations. First, being an

optional feature, it may not be supported across different chipset

vendors. In addition, it does not allow estimating CSI structures

for larger bandwidth than that used for the given packet. Finally,

it is not supported during beacon transmissions, hence it cannot

be used in applications such as AP selection during association.

When staggered sounding is supported, it can be used jointly

with CSI-SF to further reduce the number of samples required

to obtain complete knowledge of the MIMO channel.

We next evaluate the performance of CSI-SF, and also

investigate the impact of approximations that may be necessary

due to the lack of knowledge of the hardware-specific Q matrix

and power profile.

IV. EVALUATION

We evaluated the performance of CSI-SF using CSI infor-

mation collected on our 802.11n testbed. We deployed five

nodes, equipped with an Intel 5300 chipset that supports up to

3× 3 MIMO configurations. A modified chipset firmware and

kernel [18] were used to obtain the CSI matrices of successfully

received 802.11n data frames and transfer the matrices to

userspace for further analysis. We deployed the nodes in a

cubicle office environment. At different times, each node took

turns to serve as an AP on a free channel in the 5 GHz spectrum

and sent packets at various MCS rates and transmission powers,

while the other nodes, associated to the AP, collected the CSI

for received packets. We performed the tests multiple times

with different placements of nodes thus collected data from 30

different links in total. For each power level and transmission

antenna combination, we changed the MCS after each packet,

and collected CSI for 1,000 packets at each MCS, with an

average inter packet arrival time of 1 ms, which is the time

necessary for the driver to change the hardware settings. We

performed the same experiments in the 2.4 GHz band, and

obtained similar results that we omit for space constraints.

The Intel hardware only reports CSI for a subset of the

OFDM subcarriers, as defined by the grouping option in the

802.11n standard. More specifically, it reports CSI for 30

subcarriers in either the 20 MHz or the 40 MHz bonded channel

(grouping 2 and 4, respectively).

A. Single Stream to Multi Stream Combining

CSI-SF’s main goal is to predict the CSI of channel configu-

rations that have not been sampled, by using a proper combina-

tion of packets sent with a smaller number of spatial streams.

We first compare the CSI obtained from combining the CSI

of two 1-stream packets sent over two different transmission

antennas against the actual CSI of the 2-stream configuration,

sampled immediately after the two 1-stream samples were

collected. For a 1-stream packet, the Intel 5300’s CSI structure

is a 1×3×30 matrix, and for a 2-stream packet it is a 2×3×30
matrix. In Figure 4, we plot the magnitude of each element

of the CSI matrices of the two 1-stream packets (top) and
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Fig. 4. Magnitude of each CSI element for two 1-stream packets (top) and
their 2-stream combination, compared with an actual 2-stream packet (bottom).

compare the resulting combined CSI with the actual 2-stream

CSI (bottom). The combined and actual CSI are only slightly

different probably due to small channel variations between the

time at which the three packets were sampled. However, the

difference is small, and when CSI is used to compute aggregate

metrics such as eSNR, it becomes negligible. More details are

provided in the following subsections.

The accuracy of a combined estimate depends on the fresh-

ness of samples used in the combining algorithm. The office

environment in which we collected the samples does not

show significant channel variations over time, and therefore

an estimate from aged packets could be used. In a more

dynamic environment, the accuracy of the CSI-SF estimates

would degrade, but so would the accuracy of any probing

mechanism.

B. e2SNR: estimated effectiveSNR

While a complete characterization of a given channel by

looking at every element of its CSI matrix might be useful

at times, in most applications (e.g., bitrate adaptation) an

aggregate metric obtained from the CSI is sufficient. Hence

we use the effective SNR (eSNR) value, as described in [15],

to evaluate the accuracy of CSI-SF. eSNR first computes the

SNR and bit-error rate (BER) of each OFDM subcarrier. From

the subcarrier-specific information, a channel-wide BER is

computed and translated into eSNR. The accuracy of eSNR

in terms of describing the quality of OFDM MIMO channel

compared with the per-packet SNR metric that 802.11 drivers

usually provide in the form of Received (or Relative) Signal

Strength Indicator (RSSI) is shown in [15]. In the rest of this

section, we use the term, SNR, to indicate the per-packet SNR

directly given by drivers.

We evaluate the accuracy of CSI-SF by comparing the eSNR

obtained from the real CSI information against eSNR obtained

using CSI-SF, which we call estimated effective SNR (e2SNR).

Figures 5 and 6 show the relation between each metric (SNR,

eSNR and e2SNR) and the maximum supported rate on 2× 3
links we tested on various environments and configurations.

We say that a bitrate is “supported” by a given link when the

packet error rate at that bitrate is measured to be smaller than
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function of various metrics (SNR, eSNRand e2SNR) for 2-stream MCSs using
a 40 MHz channel.

10%. We define “link rate” the maximum supported bitrate for

a link. For rate adaptation algorithms and similar applications,

it is imperative that the link quality metric shows a predictable

behavior. However, for each metric, it is possible that links

with the same metric value support different link rates. For

each value of SNR, eSNR and e2SNR we find the link with

the highest and the lowest link rate and denote them as the best

and the worst links, respectively. For each metric we plot the

link rate for the best and the worst link. A good metric should

exhibit two properties:

• a small gap between the best and the worst links (ide-

ally the two lines should overlap) to enable an accurate

prediction of the link rate;

• a monotonic relation between the metric value and the link

rate, so that we can always consider a higher metric value

as a better link quality indicator.

In both Figures 5 and 6, each from 20 MHz and 40 MHz

channel widths respectively, the use of packet SNR (the top

graphs) results in significant gaps between the bitrates sup-

ported by the best and the worst links with the same SNR

value. A rate selection algorithm based on SNR could choose

to be conservative and select a low bitrate, and then increase

the rate until the link rate is reached, or be optimistic and start

from the bitrate supported by the best link with the same SNR

value and then fallback to a lower rate if the selected one is not

supported. In both cases the algorithm takes time to converge to

the optimal rate. The bottom part of the figures show the results

of using eSNR and e2SNR metrics. For the most part, the best

and the worst link overlap or show a small gap limited to one

MCS difference, which suggests that an accurate estimate of

the supported bitrate for a link is possible. Additionally, e2SNR

from combined CSI exhibits a promising bitrate predictability,

which is comparable to that of eSNR of actual CSI.

C. Effect of Unknown Q Matrix

For the hardware we used in the experiments, we had

complete knowledge of the spatial mapping matrix (Q) for the

2-stream settings. In Section III, we described why knowing

Q is necessary for computing the correct CSI for combining.

However, hardware vendors might not always disclose this

information and even when it is known at the transmitter,

informing the receiver would require additional overhead. We

investigated the effect of using inaccurate Q matrix through

MATLAB simulations. Our goal is to evaluate the effect of

applying an inaccurate Q to the received CSI on the final metric

(e2SNR). We randomly generated 10, 000 H matrices, with 30

subcarriers each. The elements of the matrices are generated

with a circularly symmetric complex Gaussian distribution with

variance 1, CN (0, 1). For each of these channels we computed

the CSI applying a TX power ranging from 10 dB to 40 dB

(this value is normalized with the noise level) and using the

identity matrix as a spatial mapping matrix (i.e., each data

stream is independently transmitted by each antenna). We also

generated 500 random Q matrices (unitary) and for each of the

CSI matrices we computed the eSNR using all the different Q

matrices. The standard deviation of the eSNR values obtained

using the 500 different values of Q, averaged over 10, 000 H

is smaller than 1 dB. Considering that 1 dB is the granularity

that all the metrics assume, and a difference of 1 dB means at

most an error of one MCS, the metric without knowledge of Q

can still be used, although the precision of the fine granularity

estimation in Figure 4 is lost.

We also tested the effect of using a wrong Q matrix also

with our real testbed, using four different values of Q (i.e., the

correct one, the identity matrix, and two randomly generated

matrices). The results, which we omit for space constraints,

showed none or very small differences compared with those in

Figures 5 and 6.

In contrast to 2-stream cases, the exact Q matrix for the 3-

stream MCSs is not known to us and thus we use the identity

matrix instead. The results using the identity matrix for 3-

stream is shown in Figure 7. The same remarks we made for

the 2-stream experiments can be applied for this experiment as

well, with the addition that in this case not only the gap between

the worst and the best link for the packet SNR metric is very
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Fig. 7. Link rates (Mbps, y-axis) for the best and the worst links as a function
of various metrics (SNR, eSNRand e2SNR) for 3-stream MCSs using a 20 MHz

channel.

large, but in some cases (e.g., between 12 dB and 16 dB) the

relation between SNR and the supported rate is non-monotonic.

The results for eSNR and e2SNR are once again very similar.

The supported rate is monotonically increasing and the gap

between the best and the worst link is never larger than 2 MCS

steps (in fact, a two MCS gap is shown only for values of eSNR

and e2SNR ≥ 17 dB). There is no significant difference in the

performance of the two metrics. These results show that CSI-SF

achieves high accuracy while reducing the probing overhead.

D. Channel Width Expansion

CSI-SF not only can be used for estimating a MIMO config-

uration with a larger number of antennas, but also for a channel

that is bonding two or more narrower channel which have

been sampled independently. Bonding of two adjacent channel

is used in 802.11n to increase the bandwidth, and the new

802.11ac standard allows bonding of non-adjacent channels up

to a bandwidth of 160MHz. We tested the accuracy of CSI-SF

on bonded channels by comparing the e2SNR obtained from

combining two 20MHz link sent on different channels, and the

actual eSNR of packets sent on the bonded channel, on several

different links. The maximum value for the standard deviation is

lower than 2 dB. The distance between the synthetic e2SNR and

the real eSNR can be explained with the large time between the

arrival of packets on the different channels in our experiments,

due to hardware configuration constraints.

Note that the reported CSI has only a subset of the OFDM

frequencies. For the 40MHz channel, three out of four sub-

carrier are not reported from the Intel hardware. This lack of

information causes the eSNR itself to be imprecise. A more

accurate evaluation using hardware capable of reporting CSI

for entire subcarriers is our future work.

E. Power Compensation

In Section III, we described the non-linear relation between

the power settings and the transmitted power at different

MCSs. When the hardware-specific power profile is known,

the receiver can compensate it when applying CSI-SF. For

example, when combining two 1-stream packets sent at MCS 7

with a power setting of 15 dBm, we must consider that the real
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Fig. 8. Relation between e2SNR link rate for the best and the worst links,
when applying power compensation (top) or ignoring it (bottom).

transmitted power is 11 dBm (Figure 3). If the combined CSI is

used to compute the e2SNR of a 2-stream MCS with no power

cap, for example MCS 8, we must compensate for a 4 dB offset

or the quality of the combined CSI will be underestimated.

However, as the power profile is a property of the hardware,

there might be situations in which the receiver does not

know what is the proper compensation to apply. In Figure 8

we compare the e2SNR performance with the proper power

compensation (top) against the same metric, computed ignoring

the power profile (bottom). We combined only packets sent with

MCS6, using transmission power settings between 10 dBm and

15 dBm, to see the difference more clearly. The most visible

effect of the lack of power compensation is the compression

of the values in the x-axis, due to the fact that the combining

algorithm tends to overestimate the power at which the original

packets are sent, which in reality is lower than the level

specified by the driver.

Our power compensation algorithm adds the offset to the

CSI before using it in the combining algorithm, to correct

this behavior. However, we observe that even when power

compensation is not applied, although e2SNR and eSNR curves

differ, e2SNR still shows the two desirable characteristics of

a good channel quality metric. However, the x-axis shift,

caused by the lack of power compensation, requires training to

identify the shifted metric-to-MCS mapping. Fortunately, even

in this case, the relation between e2SNR and the supported

rate depends on the hardware but not on individual link. Thus,

in case of downlink MCS adaptation, a receiver must train

only once when it associates with an AP based on a specific

hardware, and use that information for any other link as long as

the AP uses the same hardware. Once the training is performed

and the mapping is stored, no additional overhead is required.

V. CSI-SF APPLICATION

CSI-SF can be used to obtain a complete characterization of

the channel, without incurring the same overhead of traditional

probing. The estimated CSI can be used to improve network

performance in many ways. In this section, we describe possible

uses of CSI-SF in three common WLAN protocol applications.
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Fig. 9. Probing overhead comparison on an example 3× 3 link.

A. Optimal MCS and Antenna Selection

Bitrate adaptation is necessary to maximize the achievable

throughput in a dynamic wireless link. In legacy SISO channels,

the space to search for the best bitrate is limited to the number

of modulation and coding schemes, which is eight in the

case of 802.11a/g systems. The use of multiple antennas and

MIMO channel coding adds one more dimension. With the

conventional probing-based approach that relies on packet error

statistics for every possible bitrate, the probing overhead (or the

search space size) is asymptotically O(n2ck), where n is the

number of possible streams (usually equal to the number of TX

antennas), c is the number of modulation & coding schemes

for each stream (8 in 802.11 systems) and k is the number of

required probings for each rate to obtain enough statistics. The

n2 overhead stems from the number of possible TX antenna

combinations. If the optimal antenna selection is not supported,

the asymptotic overhead becomes O(nck) but the chance of

finding the best bitrate decreases.

The use of CSI for MCS adaptation, as shown in [15], [17] by

using the eSNR metric, greatly reduces probing overhead and

also convergence time because a single CSI matrix can directly

indicate the best MCS supported by the channel from the MCSs

using the same number of MIMO streams, thus removing the

c and k factors. Hence, the overhead of eSNRbased adaptation

schemes is O(n2). Furthermore, CSI-SF does not need to probe

all possible TX antenna combinations to compute e2SNR for

all MCSs. It only needs n 1-stream CSI samples, with each

sample from the n TX antennas.

Figure 9 illustrates the probing overhead of three different ap-

proaches: a probing-based MIMO link adaptation scheme (e.g.,

MiRA [19]), an eSNR-based scheme and CSI-SF. Since [15]

does not describe an adaptation mechanism for changing MCS

over different numbers of streams and antennas over a time-

varying channel, we simulate the best possible behavior of an

eSNR-based adaption scheme. Figure 9(a) shows the best MCSs

for all TX antenna combinations that we observed from one

example 3 × 3 link of our testbed. The 2-stream MCS 14 on

two TX antennas ‘ab’ (out of three antennas ‘a’, ‘b’ and ‘c’)

exhibited the best throughput performance on that link. Next

consider a change in the environment where channel quality

has improved from the case when MCS 1 was the best MCS.

Figure 9(b) shows that the probing-based scheme probes all 1-

stream MCSs above the current rate and all the 2-stream MCSs

that provide higher rates than MCS 7.1 MCS 15 fails because

this channel can only support up to MCS 14. MCS 21 is also

probed because this is the lowest 3-stream MCS that could

provide a higher rate than MCS 14 but this MCS also fails since

MCS 18 is the highest 3-stream MCS supported by this link. As

a result, a total of 11 probes are required and the actual probing

overhead would be much larger for a statistically meaningful

outcome. As mentioned in [19], 802.11n AMPDU aggregation

can be used to mitigate the probing message overhead but

the overhead is still much larger than the CSI-based schemes.

Unlike MiRA, where the payload size impacts the packet error

rates, the probing packets to obtain CSI matrices do not need

any data payload. 802.11n’s optional null data packet sounding

can be used to obtain CSI samples with minimal message

overhead.

Figure 9(b) clearly illustrates that the eSNR-based scheme

and CSI-SF incur much smaller probing overhead and quickly

find the best MCS. We hence expect them to perform even

better in mobile environments. In this example, the eSNR-based

scheme must probe all three TX antenna combinations of 2-

streams to discover MCS 14 transmitted over ‘ab’ is the best

one. The 3-stream MCS 16 is also probed to check if there is

any 3-stream MCS that provides a better bitrate than MCS 14;

thus four probings are used in total. In contrast, CSI-SF uses

only two probings and combines their CSI matrices with the

one from the 1-stream data packet and decides the best MCS

and the antenna combination. If we expand this example to

4× 4 MIMO, the probing overhead reduction of CSI-SF from

eSNR is from 11 to 3.

B. Channel Bonding in 802.11ac

The new IEEE 802.11ac standard, currently being defined,

is exploring the option of using up to eight 20 MHz channels

for the bonding feature. Similar to 802.11n, the proposed

scheme defines one of the 20 MHz channel as the primary

channel, while the others are secondary channels, and can

be dynamically used if necessary. A station can choose to

operate (i) using only the primary channel, (ii) leveraging

the whole 160 MHz bandwidth or (iii) selecting one or three

secondary channels to be used in conjunction with the primary

channel. Note that the secondary channels are not required to

be adjacent. Based on the bonding scheme currently discussed

in the standard group [20], [21], there are a total of 44 possible

channel combinations that a probing-based mechanism should

examine. Using the channel expansion mechanism in CSI-SF,

only eight samples are necessary, one per 20 MHz channel, to

compute a complete characterization of all the possible bonding

combinations.

1For simple illustration, we assume this probing-based scheme does not
select antennas optimally but uses antenna combinations of ‘a’, ‘ab’, and ‘abc’,
which favor this exemplary scheme since the best MCS is from ‘ab’.
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C. AP Association

Another case where CSI-SF is useful is when a client must

decide which AP to associate with. Our experiments confirmed

that the AP that has the strongest SNR might not be the one

with the highest supported rate. CSI and eSNR for the MIMO

configurations would be a better metric, but 2- and 3-stream

packets can only be received after associating with an AP.

However, three 1-stream beacons, sent from each AP on its

three antennas, would suffice for our algorithm to compute the

e2SNR of all MIMO configurations for each AP. To support

this application, an AP must simply switch the antenna from

which the beacons are sent, an easy variation on traditional

AP behavior with no effect on clients that do not implement

CSI-SF.

Of course this measurement is only valid as long as the

channel quality is stable, but this limitation applies to all

AP selection algorithms. For our experimental settings, we

studied the average standard deviation of the eSNR of packets

received in temporal windows of various sizes for the links

that we used in our experiments. We compare the results of

two links in Fig. 10. The traces were collected in the same

office environment, one of them during daytime, with no node

mobility but people freely moving in the space surrounding

the two nodes, and the other during the night when the office

was empty. The night environment is quite steady, although

interestingly it shows a certain amount of variation, independent

from the length of the window. However, in both cases, the

average standard deviation is below 1dB for up to 500ms,

and does not exceed 2dB even for the largest window tested.

This is an indication that even in a busy office environment,

when nodes are not mobile, the link rate estimated before the

association is likely to remain constant for a long period.

VI. CONCLUSION

This paper presents CSI-SF, a method for estimating CSI

using a small number of frame transmissions and extrapolating

data to settings that have not been sampled. We implemented

and evaluated CSI-SF on our 802.11n network testbed and

also discussed the practical challenges of CSI-SF. In our

experiments in various network scenarios, CSI-SF showed high

efficiency and effectiveness by achieving high accuracy in

CSI estimation with reduced sampling overhead. CSI-SF can

be utilized not only for estimating CSI for larger number of

streams, but also for wider channels and different transmission

power levels. We also showed that CSI-SF provides accurate

estimates even without knowledge of hardware specific char-

acteristics such as non-linear response to the power settings

and unknown spatial mapping matrix. We believe the algorithm

designers for rate adaptation, beamforming, association control

can take advantage of CSI-SF to improve their performance. We

also argue that CSI-SF will be even more beneficial in future

networks with more antenna configurations and wider bonded

channels.
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