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ABSTRACT
The characteristics of ad hoc networks naturally encourage the de-
ployment of distributed services. Although current networks im-
plement group communication methods, they do not support the
needs of a mobile client that must locate one or more distributed
servers. A client should not need detailed knowledge of network
topology in order to choose servers with which it can communicate
efficiently.

To this end, manycast is a group communication scheme that en-
ables communication with an arbitrary (client specified) number of
group members. Anycast and multicast communication are special
cases of manycast in which the target number of group members is
one and infinity, respectively. We present manycast and discuss its
use as a communication primitive, with specific attention to ad hoc
networks. We advocate manycast support at the network layer. A
manycast routing protocol enables a client to contact several nearby
network nodes that implement a distributed service.

We analyze some approaches to manycast, including some appli-
cation layer implementations. This evaluation supports our claim
that manycast must be implemented in the network layer for effec-
tive operation in ad hoc networks. We present several extensions to
ad hoc routing protocols that can provide manycast support with
minimal implementation effort. Through analysis and extensive
simulation, we explore the behavior of these approaches to many-
cast, finally providing recommendations to implementors.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless Communication; C.2.2 [Computer-
Communication Networks]: Network Protocols—Routing Proto-
cols; C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications
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1. INTRODUCTION
In ad hoc networks, intermittent connectivity—due to mobility,

congestion and partitioning—limits the availability of centralized
services. Ad hoc networks therefore require distributed services,
directly enhancing service availability through server replication.
A client may wish to contact multiple servers to mitigate the inher-
ent unreliability of ad hoc networks. Alternatively, the service def-
inition may actually require a client to contact a quorum of servers
for the service to maintain coherence. A client that wishes to use
such a service must determine the location of the servers, as well as
decide which server, or set of servers, it should contact. Although
support is available for group communication in ad hoc networks,
there is no clear method for a client to locate and communicate with
a subset of a distributed group of servers.

IP networking already has support for two different group com-
munication schemes: anycast [21] and multicast [5]. A client com-
municates with group members by transmitting packets addressed
to the group. The two schemes differ in the coverage of a com-
munication. For multicast, all members of the group receive every
transmission. Anycast delivers each transmission to a single mem-
ber the group, the member “closest” to the sender as determined by
the network layer. We investigate an additional group communica-
tion method, manycast, that allows clients to communicate with an
arbitrary number of group members as chosen to optimize success-
ful communication as well as communication overhead.

Essentially, manycast is a group communication paradigm in
which one client communicates simultaneously with some thresh-
old number

�
of servers from the � members of a group. Manycast

provides a unique communication challenge. As in anycast, the
ideal set of receivers for a particular transmission varies according
to its source. In fact, both anycast and multicast are special cases
of manycast communication, for

�����
and
�����

respectively.
To support service-oriented communication, manycast should en-
able efficient short transactional request/response communication
between clients and servers, in addition to a one-way dissemina-
tion of data as in IP multicast. Due to the dynamic nature of ad
hoc networks, we claim the efficient support of this bidirectional
one-to-many-to-one communication requires implementation in the
network layer.

In this paper, we investigate the problem of providing manycast
communication in an ad hoc network. Current research addresses
manycast from the application layer in infrastructure networks [14].
Application layer manycast has similar shortcomings to application



layer multicast. The lack of complete network knowledge, and the
inability to control exactly where a transmission is delivered, make
manycast at the application layer inherently less efficient than at
the network layer. Rapid topology change in mobile ad hoc net-
works magnifies these inefficiencies. This is the first work to ap-
proach efficient manycast as a routing problem in ad hoc networks.
The goal of a manycast routing protocol is to support manycast
while optimizing the same objectives used for unicast and/or mul-
ticast communication (e.g., minimizing hop count, load balancing
or conserving resources).

Our contribution is to classify mechanisms that enable manycast
and to motivate the use of manycast to support distributed services
in ad hoc networks. We show that manycast routing can provide
more efficient service than application layer approaches. We inves-
tigate mechanisms enabling manycast communication that could
support a complete manycast routing protocol.

In Section 2, we discuss the problem of service location with par-
ticular focus on ad hoc networks. We engineer manycast to address
these problems in Section 3. Section 4 proposes how manycast
can be easily implemented into existing routing protocols. Evalua-
tion of these protocols in Section 5 demonstrates the efficiency of
network-layer manycast. We devote Section 6 to future work and
conclusions drawn from our study of manycast mechanisms.

2. SERVICE LOCATION IN AD HOC
NETWORKS

The problem of service location takes on a slightly different as-
pect in ad hoc networks. High mobility and frequent partitioning
force ad hoc networks to use distributed and replicated services.
Applications (i.e., service clients) need a way to discover providers
of these distributed services. Manycast can provide for discovery
of a good candidate set of service providers and enable efficient
communication with those service instances. A short summary of
candidate applications/services that could potentially use manycast
communication completes the motivation for our work.

2.1 Location and Discovery of
Distributed Services

The applications we use every day require infrastructure support
to compose disparate components that provide services. Electronic
mail is supported by a huge network of post offices and mail for-
warding agents. Web browsing is made possible by a delicate lace-
work of web servers bound together by hyperlinks. These familiar
services are also critically reliant on Domain Name Service (DNS)
[16] to provide the name-to-address mappings that allow our ma-
chines to locate distant services.

Other services, localized in nature, require a degree of robustness
against failure. They often perform service discovery through a
local broadcast-based protocol, such as the Network Time Protocol
[15], or Network Information System (NIS) [25]. These services
provide an enabling infrastructure for other services, so it is vital
that they be resilient to failures.

The required degree of robustness against failure varies greatly
from service to service, and from network to network. For a pro-
tocol like NIS that provides access to UNIX userid and password
databases, a single broadcast packet is sufficient to provide recov-
ery with a second server for those infrequent occasions when the
primary server is down. This application context does not require
nuclear-reactor-control quality availability, since failures are rare
and the consequences of failure are little more than the occasional
user angered over a login delay that takes several seconds longer
than expected.

In ad hoc networks, even a low level of availability assurance is
hard to achieve. The constant mobility of the network nodes, in
conjunction with the rapid variability of wireless communications,
means that the network cannot necessarily provide assured com-
munication with any other node at any given time. A service that
requires coordination with a single fixed piece of infrastructure suf-
fers from the same problems that a centralized service does in an
infrastructure network, but those problems are enhanced by orders
of magnitude. Ad hoc networks are even expected to partition fre-
quently, so there may be prolonged periods of service outage in
those partitions that do not include the central server.

The only approach that somewhat alleviates the effect of par-
titioning on availability is replication. Increasing the number of
servers in the network increases the probability of availability pro-
portionally. However, increasing the number of servers also creates
the problem of maintaining consistency between them. Regardless
of any consistency requirement, a client may wish to contact more
than one server to increase the likelihood that some server is reach-
able and can provide service.

2.2 Actual Applications
A number of network applications exist today that use communi-

cation that matches the manycast pattern. The manycast paradigm
that we present in this paper is specifically designed to support the
needs of these applications. These are applications that exist today,
and can immediately benefit from manycast.

Even in infrastructure networks, the need to communicate with
a fixed number of peers from a larger group occasionally arises.
Version 4 of the Network Time Protocol [14], currently under de-
velopment, includes support for a form of autonomous configu-
ration. In the NTP scheme, a client wishes to locate the three
best/nearest servers with which to synchronize its clock. All servers
are members of a well-known IP multicast group. Clients locate
servers by performing an expanding ring search over the IP multi-
cast tree. Once the server set has been located, clients use a very
long-periodic refresh to determine if better/nearer servers have ap-
peared in the network [13]. The NTP mechanism is an application
layer manycast that uses an approach termed Scoped-Multicast in
Section 4.2.8.

The ITTC project (Intrusion Tolerance via Threshold Cryptogra-
phy [1]) provides tools and an infrastructure for building intrusion
tolerant applications. ITTC ensures that the compromise of a few
system components does not compromise sensitive security infor-
mation. Cryptographic keys are distributed across several servers
using threshold cryptography. The keys are never reconstructed at
a single location. Each server knows only a small part of the secret
key, so a client must contact several servers simultaneously.

Research on distributed public key infrastructure was the origi-
nal motivation for our study of manycast. Cornell On-Line Certi-
fication Authority (COCA) [28] introduced a distributed certificate
authority for wired networks. Again, authority is distributed across
several servers using threshold cryptography, so that a client must
contact several simultaneously for certification.

Mobile Certificate Authorities (MOCA) [26] extends the dis-
tributed certificate authority approach to wireless ad hoc networks.
MOCA enhances an ad hoc routing protocol with new message
types to perform certification requests and replies. This approach
is essentially a special-purpose manycast, what we call Unicast in
Section 4.2.5. By providing a manycast communication primitive
at the network layer, work such as MOCA could be made indepen-
dent of the routing protocol.



An often cited application of public key infrastructure in ad hoc
networks is secure routing. Given PKI, securing routing protocols
a much more tractable problem [27].

2.3 Potential Applications
We envision many other applications in ad hoc networks that

could benefit from manycast communication.
Peer-to-peer file sharing systems [4, 6] form overlay networks

between end systems by forming a number of point-to-point con-
nections between neighboring nodes. A P2P system for ad hoc net-
works could efficiently locate a number of nearby peers with which
to neighbor in the overlay by using manycast.

A sensor network is a static ad hoc network composed of small
devices with sensing capabilities scattered throughout an area of in-
terest. Sensor nodes detect an event in the environment and report
this observation either to a data collection point or to observers that
move within the network themselves. Manycast could be useful
for mobile data collectors that need sensor measurements from the
immediate environment. For example, averaging over the 50 clos-
est temperature sensors could provide a reliable idea of the local
temperature.

Distributed applications in a ubiquitous computing environment
or smart space [24] often need to configure an ensemble of nodes
to perform a computation. A bootstrapping application could use
manycast to find the

�
nearest nodes in the smart space capable of

providing a particular type of computational service (e.g., the two
nearest displays).

In general, many distributed database or cache coherence appli-
cations could benefit from manycast communication. Manycast en-
ables each component of such an application to discover a subset of
its peers with which it can most efficiently synchronize. By provid-
ing this location service in the network layer, manycast isolates the
application from knowledge of network characteristics and topol-
ogy changes. For example, consider the class of geographic routing
protocols.

Geographic routing protocols forward packets through the neigh-
bor that is geographically closest to the destination. Greedy Perime-
ter Stateless Routing (GPSR) [11] achieves routing scalability by
assuming the existence of an infrastructure of location database
servers from which a client retrieves the location of a destination.
Querying the location databases and maintaining database coher-
ence are both interesting target applications for manycast.

3. DEFINING A MANYCAST SERVICE
The need for efficient group-subset communication in ad hoc

networks motivates the development of specialized, yet simple,
communication support. To this end, we propose a network layer
manycast communication primitive. Manycast is a group commu-
nication paradigm in which one client communicates simultane-
ously with

�
of � equivalent servers in a group. Exactly how the

�

are chosen from the � is independent of the communication model
itself, but may affect the service perceived by applications.

3.1 Manycast
Manycast fills a spectrum of network communication space be-

tween anycast and multicast. Like multicast, manycast allows a
source to communicate with many destinations simultaneously. As
in anycast, the network itself chooses the exact set of destinations
from a larger set of candidates. Explicit support for manycast al-
lows an application to target a number of destinations other than 1,
as in unicast or anycast, or all, as in multicast.

Manycast provides a bidirectional channel to enable request / re-
sponse communication between client and servers, not merely one-

way dissemination of data. This bidirectional communication fol-
lows a one-to-many-to-one model. Like anycast, manycast clients
that perform stateful communications with servers will have prob-
lems, since the receiver set of any manycast transmission is not
fixed. Due to this dynamicity, we expect most uses of manycast to
be brief request/response transactions.

The brevity of session lengths for manycast communications en-
courages the development of reactive, stateless implementations.
In the proper circumstances, network-wide broadcast may be a per-
fectly suitable implementation of manycast delivery. A more proac-
tive solution—finding, establishing, and maintaining an ideal dis-
tribution tree in the network—may have overheads that dwarf the
cost of a single network flood delivery.

Applications that need a long-term or stateful interaction are best
served by using a brief manycast transaction to discover

�
servers.

Those servers can then be contacted using unicast communication,
or directed to join a source-specific multicast group. Unicast and
multicast communication better support a persistent session.

3.2 Challenges to Manycast
Ad hoc networks create some unique challenges to manycast

communication support. Particularly, the combination of ad hoc
network characteristics and on-demand operation forces manycast
implementation into the network layer.

One can conceivably implement manycast outside the routing
protocol. Application layer manycast modules present on each
node in the network would then flood a transmission throughout
the network to perform manycast delivery. Since an on-demand
routing protocol requires a network flood to perform unicast route
discovery, this seems like a nice, easy solution without being too
expensive. This illusion is quickly shattered when considering the
return path. Since the flood request reaches all � servers, each of
them unicasts a response to the client. The routing protocol on each
server node floods a route request for the client’s unicast address to
get a return route. In total, the single manycast transaction results
in ���

�
network-wide floods.

This excess of network-wide floods can have catastrophic ramifi-
cations at the MAC layer. The route request floods converge toward
the client, resulting in a broadcast implosion—a reverse broadcast
storm [18]—possibly causing collisions and loss of many of the
responses. Even if the route requests are successful, unicast rout-
ing of the responses may trigger another broadcast implosion as a
wavefront of broadcast ARP requests surges toward the client. It
has been shown that the ARP effect alone can result in nearly 30%
loss of responses [3]. For manycast to be efficient and effective, it
must be natively supported by the routing protocol.

3.3 Service Quality
Manycast supports a best-effort attempt to reach

�
servers but

provides no guarantee that exactly
�

are contacted. The quality of
a manycast delivery process is evaluated by the proportion of satis-
fied requests. A request is satisfied when at least

�
distinct server

responses arrive back at the requester. Since 1-to-
�

communication
is
�

times more likely to fail than is 1-to-1, it is necessary to con-
sider the service quality provided by manycast—the goal is not to
provide perfectly reliable transmission, but to perform better than
best-effort.

We propose an application interface for manycast that allows a
client to specify both parameters

�
, the number of responses de-

sired, and the desired reliability level. This paper defines reliabil-
ity as the expectation that any given request will receive at least�

responses (i.e., be satisfied). Note that this is unlike the usage
of “reliability” in the multicast routing literature to mean guaran-



teed delivery. An implementation that wishes to improve service
reliability may expend resources by contacting ���

�
servers to

increase the likelihood that at least
�

respond successfully. This
approach to reliability variation allows the manycast implementa-
tion to adapt to the network, isolating the application itself from
communication characteristics. The proper choice of � to provide
an application’s desired reliability level is implementation-specific,
and probably will need to adapt to the network. The simulation
study in Section 5 investigates how the choice of � affects the be-
havior of manycast communication.

Applications with reliability needs that differ from that provided
by manycast service can of course extend these reliability seman-
tics at higher layers. Just as TCP [23] provides full reliability for
unicast communication, one can imagine transport protocols atop
manycast that provide similar functionality. Since not all applica-
tions will require this stricter reliability semantic, as is the case for
unicast communication, the end-to-end argument justifies the use
of simple reliability semantics in the network layer. Exploration
of transport layer issues for manycast communication is a topic for
future research in this area.

4. MANYCAST ROUTING
Having motivated the need for manycast support, and the neces-

sity of providing that support in the network layer, the feasibility
of manycast routing remains to be shown. Can it be done at all?
We present several approaches to manycast support to demonstrate
that manycast can be easily implemented into routing protocols,
conserving overhead relative to application layer approaches.

4.1 Vocabulary
To provide a clear description of the manycast approaches, we

define some necessary terminology and a simple graphical repre-
sentation of communication patterns. Just as with unicast routing
protocols, there are two phases to the routing process. In the dis-
covery phase, the source has no knowledge about the network and
the targets of a transmission. In the delivery phase, the source has
previously discovered something about the topology of the network
and tries to use that knowledge to perform more efficient delivery
than what is possible in the discovery phase. When the network
knowledge is no longer useful, e.g., due to a link break, the routing
process moves from delivery back into the discovery phase.

We evaluate approaches using the total number of transmissions
in a delivery process. Total transmissions is a fair approximation
to energy consumption. It is equivalent to hop count in the unicast
case. To provide a more detailed explanation of each approach’s
behavior, we categorize the different types of transmissions neces-
sary to perform a transaction between source and destination nodes.
When the source first transmits the request message, we term that
transmission a request. Any retransmissions of the message by in-
termediate routers are called relays. When a response message is
first sent from a server, we term that transmission a response. Fi-
nally, unicast transmissions that carry the response along the return
path between server and client are forwards. We also classify trans-
missions as either link-layer broadcast or link-layer unicast trans-
missions to characterize the behavior of the schemes.

We illustrate the operation of each approach using the ad hoc
network of �

�����
nodes in Figure 1. This network supports a

manycast application with one client node, the hatched node la-
beled C, and �

� � �
servers, the white nodes labeled S. The goal

for this application is to reach
� �	�

servers with each manycast
transaction. The dashed lines between nodes indicate connectivity.
We indicate request and relay transmissions (those that deliver the
request to servers) as thick, lightly shaded directed edges. Trans-
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Figure 1: An ad hoc network
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Figure 2: Unicast routing with DSR

missions that carry the response message back to the client are de-
picted as narrower, darker directed edges. A depiction of these edge
styles illustrates the representation:

������������

S C S

When a transmission is sent in both directions across a link dur-
ing the course of a scenario, we remove the arrowheads and draw a
single undirected edge between the two nodes. We indicate broad-
cast transmissions with multiple outgoing edges from the same
node. The description in the text clearly differentiates whether
multiple outgoing edges indicate a single broadcast transmission
or several unicast transmissions.

A familiar unicast routing example, illustrating the operation of
the Dynamic Source Routing protocol (DSR) [10], clarifies this
representation. In the discovery phase of DSR, when a source first
needs to send a data packet to a new destination, it floods the net-
work with a route request packet. The destination, upon receiving
the flooded request, unicasts a response back to the sender along
the reverse of the route that the request followed to reach the des-
tination. This process is depicted in Figure 2. During the deliv-
ery phase of operation, the source and destination unicast back and



forth along the route discovered in the discovery phase. The cost
incurred during the discovery phase is

1 request + 27 relays +
1 response + 2 forwards

= 31 total transmissions,

whereas during the delivery phase – actually forwarding data pack-
ets – “transaction” cost is only

1 request + 2 relays +
1 response + 2 forwards

= 6 total transmissions.

4.2 Mechanisms
We discuss a set of mechanisms that alter an on-demand ad hoc

routing protocol to perform manycast delivery. Beginning with the
simplest possible extension, the mechanisms incrementally evolve
to more aggressively optimize the number of transmissions. The
goal of this process is to show that several implementations of
manycast routing exist that provide different trade-offs between
performance, reliability and ease of implementation. For each ap-
proach, analysis determines the number of transmissions required
to complete a single manycast transaction to provide an analytical
estimate of raw performance. Later simulation results in Section 5
will make the relative performance of the schemes more concrete,
as well as providing an opportunity to study the reliability of each
approach.

4.2.1 Application Layer
Analysis of the application layer manycast approach presented

in Section 3.2 provides a basis for comparison. In the example
network, the request broadcast incurs 1 request and 27 relay trans-
missions. Each responder performs a route discovery for the origin,
as in the DSR example, resulting in a similar broadcast flood with
additional unicast transmissions to propagate route replies as well
as transaction responses. The total manycast cost is � �

�
floods,

plus a number of unicasts equal to the sum of twice the hop count
from each server to the origin. For the example network,

���
�

requests +
�����
� �

���
relays +�

� responses + 26 forwards
= 384 total transmissions.

Clearly, this application layer manycast approach is prohibitively
expensive.

4.2.2 Idealized
An ideal manycast delivery has no discovery phase and requires

the smallest possible number of transmissions to perform a trans-
action. For the example network, an ideal manycast delivery is
presented in Figure 3. This delivery reaches exactly

�
servers. All

transmissions, with the exception of the original request, are uni-
cast. The cost of this distribution is

1 request + 1 relay +
3 responses + 1 forward

= 6 total transmissions.

We evaluate the raw performance of the following schemes in terms
of how closely they approach this ideal.

4.2.3 Flood
The most obvious approach is to integrate support for flood de-

livery into the routing protocol, as discussed in Section 3.2. Re-
liable multicast can similarly be supported in highly dynamic net-
works [7, 19, 20]. For manycast, the routing protocol floods each
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Figure 3: Ideal manycast distribution
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Figure 4: Flood delivery

request, so that intermediate routers set up route state just as they
would for a route request. Responses are then unicast along these
return routes with no additional discovery process (See Figure 4).
The Flood scheme reaches all � servers, but results in � fewer
floods of the network than the application layer approach. In the
figure,

1 request + 27 relays +
11 responses + 13 forwards

= 52 total transmissions.

Although more efficient than flooding in the application layer,
this scheme is still lacking the ability to learn. Sending a network-
wide broadcast and receiving � responses back provides many op-
portunities to disseminate information to and/or collect information
from the network nodes for use in later optimizations. The Flood
approach, however, is stuck in the discovery phase.

4.2.4 Scoped-Flood
Scoped-Flood is a simple learning extension to the Flood scheme.

Scoped-Flood makes one alteration to the operation of the Flood
mechanism: it floods the request packet within the smallest TTL-
limited scope that covers at least � servers. The discovery phase
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Figure 5: Scoped-Flood delivery with TTL 2

of Scoped-Flood is almost identical to Flood. The routing protocol
delivers manycast requests using network-wide broadcast, estab-
lishing route state in the network. A slight difference appears on the
return path—the unicast replies are treated as route replies by the
routing protocol. During future iterations of the delivery phase, the
client uses the entries in its route table to find the TTL scope that
includes the � closest servers. Figure 5 depicts a delivery phase
transaction in the example network using Scoped-Flood. When a
request fails to receive � replies, the client returns to the discovery
phase. Inspection of the figure yields

1 request + 5 relays +
7 responses + 5 forwards

= 18 total transmissions

for the cost of a delivery phase transaction using Scoped-Flood.
Trading-off a small amount of state at the source vastly reduces
overhead relative to the Flood approach.

When
�

—and likewise � —is small, this scoping approach tends
to localize the request broadcasts in the delivery phase to a small
region of the network, ideally containing just � servers. The ap-
proach also has a self-healing capability that insulates it against
mobility. The servers can move freely within the scope, and when
a request is flooded, the unicast routes update automatically.

4.2.5 Unicast
The Scoped-Flood approach maintains unicast routes between

the client and at least � servers. This observation leads to another
refinement of the approach: during the delivery phase requests are
unicast directly to the closest � servers. This approach provides
perfect selectivity in the delivery phase; exactly the desired set of
servers is contacted. The graphical representation is identical to
the ideal delivery depicted in Figure 3, the only difference being
that this approach uses several unicasts in place of the broadcast
transmissions of the ideal case.

Whether or not Unicast is advantageous over the Scoped-Flood
approach depends on network topology, mobility, the value of �
and the size of the scope. If the scope is large or � is small, the
selectivity of unicast transmissions can require fewer transmissions
than complete flooding within the scope. If the scope is small or �
is large, flooding may be cheaper. In the figure,

3 requests + 1 relay +
3 responses + 1 forward

= 8 total transmissions.

The small value of � in the example makes this approach effective.

4.2.6 Small Group Multicast
Recent work on small group multicast (SGM), also called ex-

plicit multicast, enables a source to multicast a packet to an ex-
plicitly specified set of destinations [2, 9]. SGM packets contain
a list of destination addresses and are propagated through the net-
work along unicast routes. We devise two variants of SGM-based
manycast, termed SGM and SGMB (for “SGM-Broadcast”). SGM
routers partition the set of destinations by next hop and link-layer
unicast a replica of the packet payload through each next hop. To
reduce the number of request transmissions to at most one per
node, SGMB takes advantage of the broadcast nature of the wire-
less medium.

The SGM approach to manycast eliminates some of the over-
head of the Unicast approach delivery phase by combining sev-
eral unicasts into a single SGM request packet. This approach is
as selective as Unicast and also has the same visual representation
(Figure 3). The difference is that each node performs at most one
transmission per next hop to propagate requests toward servers. For
the example, this translates to

2 requests + 1 relay +
3 responses + 1 forward

= 7 total transmissions,

a very slight improvement over Unicast.
For the more aggressive variant SGMB, a packet header contains

a list of (next hop, destination) address pairs and is sent via link-
layer broadcast. Receivers of the broadcast transmission that are
listed as next hops then forward the packet toward the specified
destinations. In the example, SGMB reduces overhead to

1 request + 1 relay +
3 responses + 1 forward

= 6 total transmissions,

although the optimization can be expected to have much greater
impact for larger values of � .

Note that the delivery phase of SGMB achieves the same over-
head as the ideal approach, at least in the example. In theory, the
optimal distribution tree is not necessarily a tree that covers the
closest � servers, but the approach provides a good approximation
in practice.

4.2.7 Multicast
An approach that uses traditional multicast routing to perform

manycast delivery provides an interesting reference. A multicast
tree is more selective than flooding and should therefore put sig-
nificantly less strain on the network, as a comparison of this ap-
proach in Figure 6 with the pure-flooding approach of Figure 4
makes clear. The unicast and multicast routing protocols must be
coupled so that multicast request delivery establishes unicast routes
in the network for routing reply messages. The cost evaluation of
this approach for the example is

1 request + 7 relays +
11 responses + 13 forwards

= 32 total transmissions.

This discussion neglects the overhead of maintaining the multi-
cast tree, focusing only on manycast overhead. Simulation results
in Section 5 do include maintenance overheads, which must be con-
sidered to determine the efficiency of a complete solution.

Although this approach has lower overhead than Flood, it can
still be easily improved. Just as for the Flood approach, Multicast
is permanently trapped in the discovery phase.
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Figure 7: Scoped-Multicast delivery

4.2.8 Scoped-Multicast
The application of TTL scoping to transmissions sent via the

multicast tree results in Scoped-Multicast, completing the set of
mechanisms. Like Scoped-Flood, Scoped-Multicast results in some
inefficiency, since the multicast distribution tree may unnecessarily
propagate requests down branches of the tree that do not reach a
server within the scope.

Figure 7 depicts a hypothetical Scoped-Multicast delivery. To
reach � servers in the example, the client must transmit a multicast
message with a TTL of two, incurring total costs of

1 request + 4 relays +
7 responses + 5 forwards

= 17 total transmissions.

Ideally, the routers that drop the packet when its TTL reaches zero
prune themselves from the tree, as annotated in the Figure. These
pruned branches need to automatically re-join the tree when the
manycast client returns to the non-TTL-scoped discovery phase.
To the best of our knowledge, no current manycast routing protocol
has this particular behavior.

Just as Multicast distribution is more selective than Flood, so
is Scoped-Multicast more selective than Scoped-Flood. It remains

to be seen if the overhead of tree maintenance will destroy this
advantage in practice. The overhead of reaching too many servers,
however, is not addressed by this approach; Scoped-Multicast lacks
the selectivity of the SGM-based approaches.

5. EVALUATION
To evaluate the different mechanisms, we implemented them in

the NS2 [17] simulator. The results of simulation provide many in-
sights into the trade-off between implementation complexity, state
kept, performance and reliability of each approach.

5.1 Implementation
We extend the Ad hoc On-demand Distance Vector routing pro-

tocol (AODV) [22] implementation in NS2 to perform the non-
multicast-tree based manycast approaches: Flood, Scoped-Flood,
Unicast, SGM and SGMB. Our extension enables AODV to rec-
ognize a set of network addresses that refer to manycast groups.
Packets sent to manycast group addresses are handled by the many-
cast delivery mechanism. AODV creates route state for manycast
request/reply packets just as it does for its own route request/reply
packets. Route table entries distinguish manycast servers from non-
server nodes; the manycast process is in delivery phase whenever
� routes to servers are available. For the TTL-scoped delivery
mechanisms, we add a method to AODV’s route table for deter-
mining the smallest TTL that will reach � servers. The addition
of an SGM forwarding mechanism enables AODV to support SGM
and SGMB delivery. For our testing, AODV was configured to use
802.11 delivery failure notifications as indications of link breakage.

The routing protocol in the multicast-based schemes is Adaptive
Demand-driven Multicast Routing (ADMR) [8]. ADMR operates
almost entirely on demand, building source-specific multicast dis-
tribution trees by flooding a source’s first multicast data packet to a
group address. Forwarding nodes overhear their children in the tree
rebroadcasting data packets, which serves as a passive acknowledg-
ment. After forwarding some number of packets without receiving
any passive acknowledgments, nodes automatically prune them-
selves from the tree. For each distribution tree, the source node
maintains an estimate of the inter-packet transmission time for that
tree. If no packet arrives after a significant time, the estimate is
increased and a keepalive packet is sent down the tree with the new
estimate. Non-source nodes on the tree use the inter-packet esti-
mate to decide if a lack of data packets indicates that they have
become disconnected from the tree, so that they can perform tree
repair.

The implementations of AODV and ADMR within NS2 are cou-
pled tightly so that ADMR multicast dissemination creates unicast
route state within AODV. This coupling ensures that AODV uni-
cast routes are in place to forward manycast replies at the time the
ADMR multicast requests are delivered, i.e., no additional route
discovery process is necessary to deliver replies.

5.2 Simulation Study
All simulations were run in an ad hoc network consisting of �

�
�����

nodes spread uniformly through a 1000x1000 meter square
area. Nodes are equipped with an IEEE 802.11 radio network inter-
face, operating at 2Mbps data rate with a 250m transmission range.
Nodes move according to the Random Waypoint mobility model,
with speed uniformly distributed between 0 and 10m/s and pause-
time of 10 seconds. Simulations run for 600 seconds, during which
100 non-server nodes generate 10 64-byte requests each. There are
�
� �	�

manycast servers in the network, unless otherwise speci-
fied.
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Figure 8: Packet transmissions per request, simple scenario

The number of packet transmissions at the router level indicates
performance in each set of simulation runs. Each hop-by-hop trans-
mission of the same packet is counted independently. This count-
ing method agrees with that used in the analysis in Section 4.2. The
number of satisfied requests serves as reliability metric.

5.3 Mechanisms
The intent of the first set of simulations is to differentiate the be-

havior of the various mechanisms, to provide a first notion of per-
formance and reliability. These runs use the most deterministic traf-
fic scenario possible: in turn, each client generates its 10 requests
with a constant inter-request time of 0.6 seconds – the first client
sends its 10 requests starting at time 0, the second client begins at
time 6, and so on. This traffic scenario maximizes the locality of
the requests in the network, allowing the aggressive optimizations
to shine. Although this traffic is not necessarily characteristic of
any particular service in ad hoc networks, it does provide a very
simple case to examine the mechanisms themselves.

These simulations set the parameters
�����

and �
� � �

, i.e.,
each request attempts to contact 10 servers and is considered satis-
fied upon receiving the 9th response. Each data point is averaged
over 10 separate mobility scenarios with the same parameters.

Figure 8 reports the total number of packet transmissions gener-
ated by each approach. Note that for the non-ADMR runs, the more
aggressive approaches do reduce the total number of transmissions
as expected, although perhaps not as much as expected. In these
simulations, there are almost always � servers within two hops of
a client node, so Scoped-Flood is very effective at reducing over-
head. The more aggressive optimizations show little improvement
over Scoped-Flood since there are not many redundant transmis-
sions for them to eliminate within a two-hop scope.

One anomaly here is the lackluster performance of the ADMR-
based approaches: Multicast, which barely outperforms Flood, and
Scoped-Multicast, which is much worse. Some insight into the op-
eration of ADMR explains this behavior. At simulation startup
time, all servers join the manycast group. Each node’s ADMR
module floods a “Multicast Solicitation” packet through the net-
work. The ADMR trees are slow to die, keepalive packets flow
down each tree for some time after the source stops sending re-
quests. For example, in one scenario, ADMR generated 72,000
control packet transmissions. The problem here is not a deficiency
in ADMR itself so much as a mismatch between the objectives of
ADMR, which is optimized for a very small number of long-lived
multicast flows, and manycast.
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Figure 9: Percent of failed requests, simple scenario

The mismatch between manycast and Scoped ADMR is even
more pronounced. ADMR reacts catastrophically to the TTL limit.
Nodes on the tree but outside the delivery scope treat the lack of
data and keepalive packets as an indication of tree disconnection.
Each subtree outside the delivery scope begins to flood the network
with tree repair packets. In one Scoped-Multicast simulation run,
ADMR generates 244,000 transmissions of non-data packets. The
effect of scoping on ADMR is to increase the overhead nearly four-
fold.

The lessons to learn from the failure to integrate ADMR with
manycast are 1) distribution-tree oriented routing protocols need to
be specially designed to support manycast, and 2) it is even more
important than we first realized to support manycast in the network
layer. Applications using Scoped-Multicast in the application layer
would devastate a network that uses ADMR.

The performance numbers alone do not tell the whole story. Fig-
ure 9 reports reliability, in terms of the percentage of unsatisfied
requests. The reliability of each approach is inversely related to
its performance, since eliminating redundant transmissions lowers
reliability in the presence of losses. Flood is very reliable, with a
failure rate of about 0.03%, and Scoped-Flood is very successful at
eliminating transmissions without inducing additional error, with a
failure rate of about 0.2%.

The Unicast approach, at 1.7%, shows mobility-induced losses,
which are significantly amplified by both SGM and SGMB. The
higher failure rate of SGM vs. Unicast is caused by the fate shar-
ing of all servers reached through a particular next hop. SGMB’s
increase over the failure rate of SGM is also significant, and caused
by 802.11’s lack of RTS/CTS/ACK protection for broadcast trans-
missions. The absence of RTS/CTS causes an increase in collision-
induced losses, while the absence of ACKs means that AODV can-
not detect link breaks. Intuitively, use of SGMB should lower the
congestion of the medium relative to SGM by a factor of the aver-
age number of neighbors. However, the effect of this benefit is lost,
since SGMB is much more susceptible to congestive losses. The
net effect is an overall decrease in efficiency for SGMB.

For the remainder of the section, we introduce a new metric that
couples performance and reliability: normalized transmission cost,
the total number of packet transmissions per satisfied manycast re-
quest. Figure 10 displays this normalized metric for the approaches
in this set of simulations. Relative to the raw performance num-
bers in Figure 8, the Scoped-Flood, Unicast, SGM, and SGMB ap-
proaches are much closer in terms of normalized cost – increased
reliability can be expensive. Again, poor performance of ADMR
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Figure 10: Transmissions per satisfied request, simple scenario

 150

 160

 170

 180

 190

 200

 210

 220

 230

 240

Flood Scope-
Flood

Unicast SGM SGMB

N
or

m
al

iz
ed

 T
ra

ns
m

is
si

on
s/

R
eq

ue
st

Figure 11: Transmissions per satisfied request, complex sce-
nario

is due to the mismatch between the design goals of ADMR and
manycast. For this reason, the remainder of the paper does not re-
port ADMR-based simulation results.

5.4 Complex Traffic
Having obtained a basic understanding of how the mechanisms

relate to each other through the simple traffic scenario, the next
logical step is to study a more complex situation. In the “complex”
traffic scenario, each of 100 mobile nodes still makes 10 requests,
but at times distributed uniformly at random throughout the 600
second simulation run. This increases the mean inter-request time
to the extent that temporal locality is destroyed and route caching
becomes less effective. This more complex scenario stresses the
manycast mechanisms. Each data point is again averaged over 10
runs, with the same parameter values

� � �
and �

� � �
.

Normalized request cost is reported in Figure 11 (note the scale
is different than in Figure 10). All of the results have been com-
pressed into a small range of the chart, between 196.8 - 198.4 pack-
ets transmitted per satisfied request. This scenario’s decrease in
locality causes all approaches to spend a significantly greater por-
tion of the simulation in the discovery phase. The increased use
of Flood discovery raises all approaches into the 200 pkts/request
range. Clearly, performance alone is not enough to discriminate
between the approaches in this scenario. The raw performance and
reliability numbers in Figure 12 and Figure 13 make it clear that
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Figure 12: Transmissions per request, complex scenario
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Figure 13: Percent of failed requests, complex scenario

Scoped-Flood has better reliability, while SGMB is the top per-
former. To complete the picture of manycast mechanisms, it is
necessary to investigate both reliability and performance when the
parameters � and

�
are varied.

5.5 Reliability
Since the proposed manycast application interface allows appli-

cations to specify a desired reliability level, it is important to in-
vestigate the reliability each mechanism provides. In the complex
and simple traffic experiments, failure rates vary between 0.03%
and 12.2%. The behavior of the manycast mechanisms when fail-
ure rate is held approximately constant is important, since failure
rates much greater or much less than required by the application
can both result in bad performance. This set of experiments uses
the complex traffic scenario, with

�
still 9, and the smallest value of

� � �
for each mechanism that results in an error rate of

����� ���
.

The exact values of � , determined empirically, are

Scoped-Flood Unicast SGM SGMB
9 11 11 13

resulting in the well-controlled failure rates in Figure 14. Note that
the Flood approach is independent of the choice of � , so its results
here are identical to the previous experiment. Scoped-Flood, on the
other hand, maintains good reliability with �

� �
in this experi-

ment. If this reliability holds over a wide range of values for
�

, as
Section 5.7 investigates, then the Scoped-Flood has an advantage
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Figure 14: Percent of failed requests, fixed 5% reliability
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Figure 15: Transmissions per satisfied request, fixed 5% relia-
bility

in terms of implementation complexity: it avoids the complexity of
adapting � .

The performance achieved at this reliability level is presented
in Figure 15. Scoped-Flood is the most efficient. Notably, there
is still little spread in the performance of the different approaches.
For comparison, a 10% reliability target gives the same results as
in the complex traffic experiment, with the exception of Scoped-
Flood, which uses the same parameters as for 5%. At 10% reli-
ability Scoped-Flood is still the most efficient approach, but only
by a very narrow margin. The more aggressive approaches pay in
reliability for their advantages in performance, resulting in almost
equivalent normalized performance numbers.

The end result of the investigation into reliability is to discover
that, at reasonable reliability levels of 5-10%, Scoped-Flood is pre-
ferred. Just as in earlier experiments, the spread of performance
levels is narrow, implying that further examinations are necessary
to truly determine the best approach. For the remainder of the sim-
ulations, � is set independently for each approach to maintain the
10% reliability level, with a 1% tolerance.

5.6 Varying Server Density
The effect of varying the parameter � , the number of many-

cast servers in the network, is a key behavioral characteristic. This
study determines how the mechanisms react to changes in � , as
well as providing insight for designers of manycast applications.
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Figure 16: Transmissions per satisfied request, varying server
density

How many servers should there be in a network? Intuitively, it
seems that more servers will enhance availability and performance
by encouraging spatial locality in communication.

These experiments use the complex traffic scenario and vary the
number of manycast servers � between 10 and 50 by increments
of 5, with

�
again fixed at 9. � is independently chosen for each

combination of approach and � , to bound the error rate at the 10%
reliability level. The resulting empirically determined values of �
are

Scoped-Flood Unicast SGM SGMB
9 10 10 10, �����

�

11, �
� �

�

For higher values of � , SGMB needs a greater � to protect its
requests against congestion.

The normalized performance in Figure 16 reports the first set of
simulation results. There is an interesting lesson here for the ad hoc
network architect: increasing the number of servers in the network
has a direct negative consequence on performance. Clearly, Flood
request overhead is unrelated to � , but reply overhead scales di-
rectly with � . Since the other approaches are critically dependent
on flooding for their discovery phases, their behavior also shows
this linear increase with � , albeit with less impact than on the
Flood approach itself.

Again, there is little spread in the normalized costs, with Scoped-
Flood using its self-healing ability to good advantage. In fact, this
characteristic of Scoped-Flood dominates the behavior, as can be
seen from the raw transmission counts in Figure 17 (note that the
results for Flood have been removed for clarity). Regardless of
the value of � , SGMB always uses the fewest transmissions and
Scoped-Flood the most. Scoped-Flood’s self-healing ability pro-
vides greater reliability so that it spends more time in the delivery
phase, achieving the best normalized performance.

5.7 Varying �

The last critical facet of manycast behavior is reaction to vary-
ing the parameter

�
. This experiment also uses the complex traffic

scenario and varies
�

from 1 to 24. Tests with
� � � �

produced
catastrophic failure rates of over 60% for all approaches – manycast
is not appropriate for reliable transactional communication with a
large group. � is independently chosen for each combination of
approach and

�
to bound the error rate at the 10% reliability level.

The ideal values of � , again determined empirically, vary substan-
tially with

�
, as depicted in Figure 18. The failure rates that result
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Figure 17: Transmissions per request, varying server density
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vs.
�

from these choices of � are in Figure 19. Note that this is the
first experiment that required a � �

�
for Scoped-Flood. From

the wide variation in values for � , we infer that an actual manycast
implementation needs to dynamically adapt � to observed network
characteristics.

The raw and normalized transmission statistics for this set of
simulations in Figure 20 and Figure 21 tell an interesting tale. Since
the Flood approach operates independent of

�
, its raw performance

is flat, although normalized performance does suffer from lost re-
sponses for high values of

�
. Other approaches asymptotically ap-

proach the Flood mechanism as
�

increases. The reason for this
asymptotic behavior can be seen with the assistance of Figure 22,
which shows the number of delivery phase (vs. discovery phase)
transactions for each approach and value of

�
. Clearly, as

�
in-

creases, the manycast approaches spend more time in the discovery
phase maintaining reliability, and not enough time in the delivery
phase reducing overhead. Again, the same trend holds that was
seen in earlier experiments: SGMB uses the fewest transmissions,
and Scoped-Flood the most, but Scoped-Flood’s higher reliability
makes it the most efficient approach. Overall, Scoped-Flood’s be-
havior is clearly the most desirable across the spectrum of sim-
ulated experiments. It is convenient to future implementors that
one of the simplest mechanisms to implement is the most effective
across a wide range of scenarios.
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Figure 20: Transmissions per request, varying
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6. CONCLUSIONS AND
FUTURE DIRECTIONS

Although none of the proposed simple approaches comes close
to achieving the ideal performance of Section 4.2.2, they all signif-
icantly outperform the application layer approach of Section 4.2.1.
To illustrate, with �

�
� and �

� �	�
, Flood generates 235

transmissions per request in the simulated network—the applica-
tion layer approach in Section 4.2.1 would need more than �

�
������ �

� �
� �

. Even Flood, the least aggressive but simplest approach
to implement, improves overhead by an order of magnitude over the
application layer approach. Clearly, manycast is viable and neces-
sarily must be implemented at the network layer.

The simulation study herein shows that the behavior of the pro-
posed manycast mechanisms is dominated by the cost of the Flood
discovery phase. Also, the best behaved approach is Scoped-Flood,
which keeps some of the Flood approach’s insulation against mo-
bility, but at a huge savings in overhead. These two facts imply that
a combination of one of the more aggressive approaches (SGM or
Unicast) with Scoped-Flood for delivery tree discovery and repair
would be most effective. Using the well-known expanding ring
search technique from ad hoc routing would enable just such an
integration.

Future work is needed to study how a manycast implementation
should choose the parameter � to ensure reliability without sacri-
ficing performance. Our simulation study shows that Scoped-Flood
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is effective with � very close to
�

over a wide range, while other
approaches are more sensitive. Also, future research may deter-
mine how manycast routing can take advantage of cache sharing.
Perhaps the expanding-ring-search approach proposed in this sec-
tion could benefit from manycast server routes cached at interme-
diate nodes.

Kozat and Tassiulas [12] propose a virtual backbone approach
for service discovery as well as routing in ad hoc networks. Com-
parison of their proactive approach with the reactive approaches
presented herein is an interesting avenue of future investigation.

The interaction between manycast and higher communication
layers, especially the transport layer, is an area that we have not yet
begun to explore. Application use of manycast for data transport
must address congestion control. Just like multicast, a manycast
data flow branches out across multiple paths in the network with
the potential to cause significantly more congestion than a single
unicast flow. It is unclear how retransmission of failed requests
will interact with the different mechanisms we present for many-
cast transport.
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