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Abstract—One of the key features of high speed WLAN such
as 802.11n is the use of MIMO (Multiple Input Multiple Output)
antenna technology. The MIMO channel is described with fine
granularity by Channel State Information (CSI) that can be
utilized in various ways to maximize the network performance.
Many complex parameters of a MIMO system require numerous
samples to obtain CSI for all possible channel configurations. As
a result, measuring the complete CSI space requires excessive
sampling overhead and thus degrades the network performance.
We propose CSI-SF (CSI with Sampling & Fusion), a method
for estimating CSI using a small number of frame transmissions
and extrapolating data to settings that have not been sampled.
For instance, we predict CSI of multiple stream settings using
CSI obtained only from single stream packets. We evaluate the
effectiveness of CSI-SF on various network scenarios using our
802.11n testbed and show that CSI-SF provides an accurate,
complete knowledge of the MIMO channel with reduced overhead
from traditional sampling. We also show that CSI-SF can be
applied to network algorithms such as rate adaptation, antenna
selection and association control to significantly improve their
performance and efficiency.

The new IEEE 802.11n [1] and the emerging IEEE

802.11ac [2] standards aim to provide very high throughput

WLAN to meet this growing demand of applications and

services. Some of the key enhancements used for increasing

the throughput are using wider, bonded channels (40 MHz in

802.11n and up to 160 MHz in 802.11ac), frame aggregation

and block acknowledgments, a short guard interval, and MIMO

(Multiple Input Multiple Output) antennas [3], [4]. MIMO is a

popular technology in wireless communications (e.g., 802.11n,

WiMax, 3GPP LTE, etc.) to increase link throughput and

distance. 802.11n devices in the current market support up to

three MIMO spatial streams.

Algorithms and protocols for WLAN need to consider the

new features offered by multiple antennas; for instance, rate

adaptation is not only selecting modulation and coding rate but

also the number of concurrent spatial data streams transmitted.

In order to achieve optimal WLAN performance, we require a

detailed knowledge of the wireless link, which can be acquired

through the Channel State Information (CSI). CSI represents the

current condition of the channel, and consists of the attenuation

and phase shift experienced by each spatial stream to each

receive antenna in each of the OFDM subcarriers. CSI is

provided in the 802.11n hardware by analyzing received packets

using training sequences in the packet headers. For network

algorithms such as rate selection, AP association, channel

assignment, etc., to make a timely, optimal decision, accurate

CSI estimates under various settings (e.g., different number

of spatial streams, transmission antennas used, transmission

powers, etc.) must be known. However, some of these settings

might not have been sampled in recently received packets

and additional frame transmissions are required to obtain the

complete CSI. This extra process consumes bandwidth and

increases latency, and hence such unnecessary sampling should

be avoided.

We present CSI-SF (Channel State Information with Sam-

pling and Fusion), a CSI processing technique that predicts

the complete CSI, including those of non-sampled MIMO

configurations, using a small number of samples. For example,

with CSI-SF we can predict the CSI of a 3 × 3 channel using

CSI measured from packets sent using a 1× 3 configuration.

Many implementations of 802.11n require successful decod-

ing of a data packet in order to obtain the CSI.

In current CSI estimation approaches, obtaining CSI for all

possible configurations of a 3 × 3 system requires seven sam-

ples: 1-stream Modulation and Coding Schemes (MCS) require

three probes, one per each TX antenna. Similarly, 2-stream

MCSs require three probes to collect CSI for each combination

of two antennas. Lastly, 3-stream MCSs require a single probe

using a transmission from all three transmit antennas. The

number of required samples increases dramatically when the

system supports 4×4 communication or larger channel widths.

Moreover, hardware commonly provides CSI reports only for

unicast packets, thus limiting the possibility of opportunistically

collecting the CSI matrices by eavesdropping; a node must be

connected to an access point to actively send or receive probing

packets.

We address the problem of estimating p × q × R CSI data

structures using packets encoded with mi × ni ×Wi schemes,

where p ≥ mi, q ≥ ni, R ≥ Wi, and (p, q, R) 6= (mi, ni,Wi),
where i is the packet index. That is, we use CSI data structures

obtained from multiple packet transmissions to estimate larger

CSI data structures. We describe this problem in the context of

an 802.11n system. However, similar ideas can be applied to

CSI estimation in other MIMO OFDM systems (e.g. WiMAX).

We aggregate CSI obtained from multiple packets to derive

CSI corresponding to a larger channel than those used to send

and receive these packets. For example, a 2 × 2 × 56 CSI

matrix can be obtained by combining the CSI information that

are derived from two packets transmitted using a 2 × 1 × 56



configuration, as long as different transmit antennas are used

to send the two packets. The combining of CSI from multiple

packets can be used to:

• estimate a m×q×W CSI matrix using packets sent/received

with an m×n×W configuration, with q > n (i.e., estimate

a CSI matrix corresponding to more transmit antennas than

the number used to send each packets for estimation);

• estimate a m×n×R CSI matrix using packets sent/received

with an m×n×W configuration with R > W (i.e. estimate

a CSI matrix corresponding to a larger bandwidth than the

one used to send each packets for estimation);

• estimate a CSI matrix combining the above two cases

(i.e. enlarge the number of antennas and bandwidth in the

combined CSI).

When combining CSI, three aspects of the MIMO trans-

mission chain must be considered. First, the 802.11n standard

allows the use of a precoding matrix Q to map the bit

streams into the channel. Typically, the precoding matrix Q

does not need to be known at the receiver, and the channel

estimation algorithm provides an estimate which includes its

effect. However, the CSI-SF combining technique requires the

receiver to know Q to isolate the channel information from the

CSI report.

Secondly, due to regulations and practical limitations, there

is a total power constraint for the transmitted signal. In order to

meet the total power constraint, the power transmitted on each

subcarrier may vary for different configurations with different

bandwidths or number of transmit antennas.

Finally, in most WLAN deployments, dynamic transmission

power is used in combination with rate control to reduce power

consumption. Commodity hardware allows the user to choose

a transmission power level. If the transmitted power closely

follows the level chosen by the user, we can apply a scale factor

to the CSI of a packet transmitted at a specific power level to

estimate the CSI of a different power level. For example, if

we receive a packet sent at 7 dBm and we are interested in

the estimated CSI for a transmission with the same antenna

configuration at 5 dBm, it is enough to subtract 2 dB from the

magnitude of the original CSI to obtain the new one. However,

practical limitations influence the power control capabilities

of real transceivers. Power amplifiers are not perfectly linear,

producing increasing distortion as they are driven closer to

their maximum rated power. The distortion introduced by the

transmitter amplifiers has a bigger impact on MCSs with larger

coding rates and higher order modulations. As a result, many

transceivers limit the output power used for high rate MCSs

through various power caps.

In our poster we will discuss how CSI-SF addresses these

three issues as well as the impact of introducing approxima-

tion required when some hardware-specific information is not

known or to limit the overhead of our solution.

EVALUATION

We evaluate the performance of CSI-SF using CSI infor-

mation collected on our 802.11n testbed. We deployed five
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Fig. 1. Magnitude of each CSI element of two single stream packets (top)
and their dual stream combination, compared with an actual dual stream packet
(bottom).

nodes, equipped with an Intel 5300 chipset that supports up to

3×3 MIMO transmission. Modified chipset firmware and kernel

from [5] are used to obtain the CSI matrices of successfully

received 802.11n data frames and transfer the matrices to

userspace for further analysis. We deployed the nodes in a

cubicle office environment and collected CSI for different links,

power settings and antenna configurations.

In Figure 1, we plot the magnitude of each element of the

CSI matrices of two 1-stream packets (top) and compare the

combined CSI obtained using CSI-SF with the actual 2-stream

CSI (bottom). The combined and actual CSI are only slightly

different probably due to small channel variations between the

time at which the three packets were sampled. However, the

difference is small, and when CSI is used to compute aggregate

metrics such as eSNR, the difference becomes negligible as we

show in the following subsections.

While a complete characterization of a given channel by

looking at every element of its CSI matrix might be useful

at times, in most applications (e.g., bitrate adaptation) an

aggregate metric obtained from the CSI is sufficient. Hence

we use the effective SNR (eSNR) value, as described in [6],

to evaluate the efficacy of CSI-SF. eSNR first computes the

SNR and bit-error rate (BER) of each OFDM subcarrier. From

the subcarrier-specific information, a channel-wide BER is

computed and translated into eSNR. The efficacy of eSNR in

terms of accurately metricizing the quality of OFDM MIMO

channel compared with the per-packet SNR metric that 802.11

drivers usually provide in the form of Received (or Relative)

Signal Strength Indicator (RSSI)1 is shown in [6]. In the rest of

this section, we use the term, SNR, to indicate the per-packet

SNR directly given by drivers.

We evaluate the accuracy of CSI-SF by comparing the eSNR

obtained from the real CSI information against eSNR obtained

using CSI-SF, which we call estimated effective SNR (e2SNR).

Figures 2 highlights the relation between each metric (SNR,

eSNR and e2SNR) and the maximum supported rate on 2× 3
and on 3 × 3 links we tested on various environments and

1Receivers with multiple RX antennas usually compute a packet RSSI by
averaging or taking the maximum of RSSIs measured for each RX antenna.
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Fig. 2. Link rates (Mbps, y-axis) for the best and the worst links as a function of various metrics (SNR, eSNRand e2SNR) for 2-stream (left) and 3-stream
(right) MCSs using a 20 MHz channel.

configurations. We say a bitrate is “supported” by a given

link when the packet error rate for the MCS at that bitrate

is measured to be smaller than 10%. We define “link rate”

the maximum supported bitrate for a link. For rate adaptation

algorithms and similar applications, it is imperative that the link

quality metric shows a predictable behavior. However, for each

metric, links with the same metric value can provide a different

link rate. For each value of SNR, eSNR and e2SNR we find the

link with the highest and the lowest link rate and denote them

as the best and the worst links, respectively. For each metric

we plot the link rate for the best and the worst link. A good

metric will exhibit two properties:

• a small gap between the best and the worst links (ide-

ally the two lines should overlap) to enable an accurate

prediction of the link rate;

• a monotonic relation between the metric value and the link

rate, so that we can always consider a higher metric value

as a better link quality.

The use of packet SNR (the topmost graphs) results in

significant gaps between the bitrates supported by the best and

the worst links with the same SNR value. A rate selection

algorithm based on SNR could choose to be conservative and

select a low bitrate, and then increase the rate until the link rate

is reached, or be optimistic and start from the bitrate supported

by the best link with the same SNR value and then fallback to

a lower rate if the selected one is not supported. In both cases

the algorithm takes time to converge to the optimal rate. The

bottom part of the figures show the results of using eSNR and

e2SNR metrics. For the most part, the best and the worst link

overlap or show a small gap limited to one MCS difference.

Most of all, e2SNR from combined CSI exhibits a promising

bitrate predictability, which is comparable to that of eSNR of

actual CSI.

CSI-SF not only can be used for estimating a MIMO config-

uration with a larger number of antennas, but also for a channel

that is bonding two or more narrower channel which have been

sampled independently. Bonding of two adjacent channel is

enforced in 802.11n to increase the bandwidth, and the new

802.11ac standard allows bonding of non-adjacent channels up

to a bandwidth of 160MHz. We tested the accuracy of CSI-SF

on bonded channels by comparing the e2SNR obtained from

combining two 20MHz link sent on different channels, and

the actual eSNR of packets sent on the bonded channel, on

several different links. The maximum value for the standard

deviation is lower than 2 dB. The distance between the synthetic

e2SNR and the real eSNR can be explained with the large time

between the reception of packets on the different channels in

our experiments, due to hardware configuration constraints.

CONCLUSION

In this poster abstract we present CSI-SF, a method for

estimating CSI using a small number of frame transmissions

and extrapolating data to settings that have not been sampled.

Our preliminary results, based on the CSI collected in our

802.11n network testbed, show that CSI-SF can be utilized

not only for estimating CSI for larger number of streams, but

also for wider channels. We believe the algorithm designers

for rate adaptation, beamforming, association control can take

advantage of CSI-SF to improve their performance. We also

argue that CSI-SF will be even more beneficial in future

networks with more antenna configurations and wider bonded

channels.
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